Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 13(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37370400

ABSTRACT

In a cross-sectional study, it was identified that three regions in Germany differed with respect to their herd-level prevalence for paratuberculosis in dairy cattle. In the study presented here, the same farms were analyzed to identify those components of biosecurity and farm management with the highest impact on Mycobacterium avium ssp. paratuberculosis (MAP) introduction and establishment in a farm. Hence, the data analyzes included 183, 170 and 104 herds from the study regions north, east and south, respectively. A herd was considered MAP-positive if at least one fecal environmental sample was positive. Twenty-six different possible risk factors from five different components of biosecurity and farm management were analyzed. We show that the average management of calf feeding increased the odds for a MAP-positive farm by 5.22 times (95% confidence interval (CI) = 1.25-21.83). With every 100-cow increase in farm size, the risk for a farm to test MAP-positive increased by 1.94 times (CI = 1.15-3.27), 1.14 times (CI = 1.02-1.27) and 5.53 times (CI = 0.44-68.97) in the north, east and south study regions, respectively. Furthermore, the purchase of cattle with an unknown MAP status increased the risk for a farm testing MAP-positive by 2.86-fold (CI = 1.45-5.67). Our results demonstrate that herd size, unknown MAP status of the purchased cattle and different aspects of calf feeding play an important role in the MAP status of a farm and should be in focus in regions with different MAP between-herd prevalence. Additionally, farm individual risk patterns should be identified during (veterinary) biosecurity consultancy.

2.
Animals (Basel) ; 12(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35203155

ABSTRACT

On-farm environmental sampling is an effective method for herd-level diagnosis of Mycobacterium avium ssp. paratuberculosis (MAP) infection and between-herd prevalence estimation. So far, no prevalence study enrolling important livestock-farming regions has been conducted. As the structure of dairy farming differs between main livestock-farming regions in Germany, our objective was to assess the between-herd prevalence of paratuberculosis for these regions in a standardized approach. Methods: In total, 457 randomly selected dairy farms from three regions of Germany (North: 183, East: 170, South: 104) were sampled between 2017 and 2019. Environmental samples (boot-swabs, aggregate feces and/or liquid manure samples) were cultured and analyzed using an IS900-qPCR for MAP determination. Of the 457 selected farms, 94 had at least one MAP-positive environmental sample with significant differences between regions regarding the apparent (North: 12.0%, East: 40.6%, South: 2.9%) or corrected true (North: 14.8%, East: 50.1%, South: 3.6%) between-herd prevalence. In conclusion, regional differences of between-herd prevalence of paratuberculosis are substantial in Germany, indicating the need for control approaches with different aims. Taking into account regional MAP prevalence, MAP-control programs should focus on on-farm prevalence reduction or on mitigating the risk of between-herd transmission, depending on region.

SELECTION OF CITATIONS
SEARCH DETAIL