Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4961, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862514

ABSTRACT

Phases with spontaneous time-reversal ( T ) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong T -symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the T -symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film Mn5Si3 with a vanishingly small net magnetic moment. By symmetry analysis and first-principles calculations we demonstrate that the unconventional d-wave altermagnetic phase is consistent with the experimental structural and magnetic characterization of the Mn5Si3 epilayers, and that the theoretical anomalous Hall conductivity generated by the phase is sizable, in agreement with experiment. An analogy with unconventional d-wave superconductivity suggests that our identification of a candidate of unconventional d-wave altermagnetism points towards a new chapter of research and applications of magnetic phases.

2.
Adv Mater ; : e2314076, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619144

ABSTRACT

Altermagnetic (AM) materials exhibit non-relativistic, momentum-dependent spin-split states, ushering in new opportunities for spin electronic devices. While the characteristics of spin-splitting are documented within the framework of the non-relativistic spin group symmetry, there is limited exploration of the inclusion of relativistic symmetry and its impact on the emergence of a novel spin-splitting in the band structure. This study delves into the intricate relativistic electronic structure of an AM material, α-MnTe. Employing temperature-dependent angle-resolved photoelectron spectroscopy across the AM phase transition, the emergence of a relativistic valence band splitting concurrent with the establishment of magnetic order is elucidated. This discovery is validated through disordered local moment calculations, modeling the influence of magnetic order on the electronic structure and confirming the magnetic origin of the observed splitting. The temperature-dependent splitting is ascribed to the advent of relativistic spin-splitting resulting from the strengthening of AM order in α-MnTe as the temperature decreases. This sheds light on a previously unexplored facet of this intriguing material.

3.
Adv Sci (Weinh) ; 11(1): e2304785, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37988708

ABSTRACT

The possibility to engineer (GeTe)m (Sb2 Te3 )n phase-change materials to co-host ferroelectricity is extremely attractive. The combination of these functionalities holds great technological impact, potentially enabling the design of novel multifunctional devices. Here an experimental and theoretical study of epitaxial (GeTe)m (Sb2 Te3 )n with GeTe-rich composition is presented. These layered films feature a tunable distribution of (GeTe)m (Sb2 Te3 )1 blocks of different sizes. Breakthrough evidence of ferroelectric displacement in thick (GeTe)m (Sb2 Te3 )1 lamellae is provided. The density functional theory calculations suggest the formation of a tilted (GeTe)m slab sandwiched in GeTe-rich blocks. That is, the net ferroelectric polarization is confined almost in-plane, representing an unprecedented case between 2D and bulk ferroelectric materials. The ferroelectric behavior is confirmed by piezoresponse force microscopy and electroresistive measurements. The resilience of the quasi van der Waals character of the films, regardless of their composition, is also demonstrated. Hence, the material developed hereby gathers in a unique 2D platform the phase-change and ferroelectric switching properties, paving the way for the conception of innovative device architectures.

4.
Nat Commun ; 14(1): 6127, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37779120

ABSTRACT

The interplay between spin-orbit interaction and magnetic order is one of the most active research fields in condensed matter physics and drives the search for materials with novel, and tunable, magnetic and spin properties. Here we report on a variety of unique and unexpected observations in thin multiferroic Ge1-xMnxTe films. The ferrimagnetic order parameter in this ferroelectric semiconductor is found to switch direction under magnetostochastic resonance with current pulses many orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Utilizing these observations, we apply a novel methodology to controllably harness this stochastic magnetization dynamics.

5.
Sci Rep ; 13(1): 14871, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684274

ABSTRACT

We report on advanced in-situ magneto-transport measurements in a transmission electron microscope. The approach allows for concurrent magnetic imaging and high resolution structural and chemical characterization of the same sample. Proof-of-principle in-situ Hall measurements on presumably undemanding nickel thin films supported by micromagnetic simulations reveal that in samples with non-trivial structures and/or compositions, detailed knowledge of the latter is indispensable for a thorough understanding and reliable interpretation of the magneto-transport data. The proposed in-situ approach is thus expected to contribute to a better understanding of the Hall signatures in more complex magnetic textures.

6.
Sci Adv ; 8(13): eabn3535, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35353557

ABSTRACT

The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its physical fundamentals to applications in information technologies. Here, we explore antiferromagnetic CuMnAs in which imaging by x-ray photoemission reveals the presence of magnetic textures down to nanoscale, reaching the detection limit of this established microscopy in antiferromagnets. We achieve atomic resolution by using differential phase-contrast imaging within aberration-corrected scanning transmission electron microscopy. We identify abrupt domain walls in the antiferromagnetic film corresponding to the Néel order reversal between two neighboring atomic planes. Our work stimulates research of magnetic textures at the ultimate atomic scale and sheds light on electrical and ultrafast optical antiferromagnetic devices with magnetic field-insensitive neuromorphic functionalities.

7.
Nat Commun ; 13(1): 724, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35132068

ABSTRACT

Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.

8.
J Appl Crystallogr ; 53(Pt 5): 1310-1320, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33117111

ABSTRACT

Core-shell nanowires (NWs) with asymmetric shells allow for strain engineering of NW properties because of the bending resulting from the lattice mismatch between core and shell material. The bending of NWs can be readily observed by electron microscopy. Using X-ray diffraction analysis with a micro- and nano-focused beam, the bending radii found by the microscopic investigations are confirmed and the strain in the NW core is analyzed. For that purpose, a kinematical diffraction theory for highly bent crystals is developed. The homogeneity of the bending and strain is studied along the growth axis of the NWs, and it is found that the lower parts, i.e. close to the substrate/wire interface, are bent less than the parts further up. Extreme bending radii down to ∼3 µm resulting in strain variation of ∼2.5% in the NW core are found.

9.
Nanomaterials (Basel) ; 10(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086493

ABSTRACT

Twin domains are naturally present in the topological insulator Bi2Se3 and strongly affect its properties. While studies of their behavior in an otherwise ideal Bi2Se3 structure exist, little is known about their possible interaction with other defects. Extra information is needed, especially for the case of an artificial perturbation of topological insulator states by magnetic doping, which has attracted a lot of attention recently. Employing ab initio calculations based on a layered Green's function formalism, we study the interaction between twin planes in Bi2Se3. We show the influence of various magnetic and nonmagnetic chemical defects on the twin plane formation energy and discuss the related modification of their distribution. Furthermore, we examine the change of the dopants' magnetic properties at sites in the vicinity of a twin plane, and the dopants' preference to occupy such sites. Our results suggest that twin planes repel each other at least over a vertical distance of 3-4 nm. However, in the presence of magnetic Mn or Fe defects, a close twin plane placement is preferred. Furthermore, calculated twin plane formation energies indicate that in this situation their formation becomes suppressed. Finally, we discuss the influence of twin planes on the surface band gap.

10.
Nat Commun ; 10(1): 5459, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784509

ABSTRACT

Non-collinear antiferromagnets are revealing many unexpected phenomena and they became crucial for the field of antiferromagnetic spintronics. To visualize and prepare a well-defined domain structure is of key importance. The spatial magnetic contrast, however, remains extraordinarily difficult to be observed experimentally. Here, we demonstrate a magnetic imaging technique based on a laser induced local thermal gradient combined with detection of the anomalous Nernst effect. We employ this method in one the most actively studied representatives of this class of materials-Mn3Sn. We demonstrate that the observed contrast is of magnetic origin. We further show an algorithm to prepare a well-defined domain pattern at room temperature based on heat assisted recording principle. Our study opens up a prospect to study spintronics phenomena in non-collinear antiferromagnets with spatial resolution.

11.
Nano Lett ; 18(1): 144-151, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29257691

ABSTRACT

Semiconductors are essential for modern electronic and optoelectronic devices. To further advance the functionality of such devices, the ability to fabricate increasingly complex semiconductor nanostructures is of utmost importance. Nanowires offer excellent opportunities for new device concepts; heterostructures have been grown in either the radial or axial direction of the core nanowire but never along both directions at the same time. This is a consequence of the common use of a foreign metal seed particle with fixed size for nanowire heterostructure growth. In this work, we present for the first time a growth method to control heterostructure growth in both the axial and the radial directions simultaneously while maintaining an untapered self-seeded growth. This is demonstrated for the InAs/InAs1-xPx material system. We show how the dimensions and composition of such axio-radial nanowire heterostructures can be designed including the formation of a "pseudo-superlattice" consisting of five separate InAs1-xPx segments with varying length. The growth of axio-radial nanowire heterostructures offers an exciting platform for novel nanowire structures applicable for fundamental studies as well as nanowire devices. The growth concept for axio-radial nanowire heterostructures is expected to be fully compatible with Si substrates.

12.
J Synchrotron Radiat ; 24(Pt 5): 981-990, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28862620

ABSTRACT

Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\bar{1}] direction in the vicinity of the wurtzite 00\bar{1}\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.

13.
Phys Rev Lett ; 119(2): 027204, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28753323

ABSTRACT

We report an experimental investigation of the two-dimensional J_{eff}=1/2 antiferromagnetic Mott insulator by varying the interlayer exchange coupling in [(SrIrO_{3})_{1}, (SrTiO_{3})_{m}] (m=1, 2 and 3) superlattices. Although all samples exhibited an insulating ground state with long-range magnetic order, temperature-dependent resistivity measurements showed a stronger insulating behavior in the m=2 and m=3 samples than the m=1 sample which displayed a clear kink at the magnetic transition. This difference indicates that the blocking effect of the excessive SrTiO_{3} layer enhances the effective electron-electron correlation and strengthens the Mott phase. The significant reduction of the Néel temperature from 150 K for m=1 to 40 K for m=2 demonstrates that the long-range order stability in the former is boosted by a substantial interlayer exchange coupling. Resonant x-ray magnetic scattering revealed that the interlayer exchange coupling has a switchable sign, depending on the SrTiO_{3} layer number m, for maintaining canting-induced weak ferromagnetism. The nearly unaltered transition temperature between the m=2 and the m=3 demonstrated that we have realized a two-dimensional antiferromagnet at finite temperatures with diminishing interlayer exchange coupling.

14.
Nat Commun ; 8(1): 91, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733618

ABSTRACT

Successful formation of electronic interfaces between living cells and semiconductors hinges on being able to obtain an extremely close and high surface-area contact, which preserves both cell viability and semiconductor performance. To accomplish this, we introduce organic semiconductor assemblies consisting of a hierarchical arrangement of nanocrystals. These are synthesised via a colloidal chemical route that transforms the nontoxic commercial pigment quinacridone into various biomimetic three-dimensional arrangements of nanocrystals. Through a tuning of parameters such as precursor concentration, ligands and additives, we obtain complex size and shape control at room temperature. We elaborate hedgehog-shaped crystals comprising nanoscale needles or daggers that form intimate interfaces with the cell membrane, minimising the cleft with single cells without apparent detriment to viability. Excitation of such interfaces with light leads to effective cellular photostimulation. We find reversible light-induced conductance changes in ion-selective or temperature-gated channels.Nanomaterials that form a bioelectronic interface with cells are fascinating tools for controlling cellular behavior. Here, the authors photostimulate single cells with spiky assemblies of semiconducting quinacridone nanocrystals, whose nanoscale needles maximize electronic contact with the cells.

15.
J Appl Crystallogr ; 50(Pt 3): 673-680, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28656032

ABSTRACT

Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In0.15Ga0.85As/GaAs core-shell-shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core-shell-shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.

16.
J Appl Crystallogr ; 50(Pt 2): 369-377, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28381969

ABSTRACT

The twin distribution in topological insulators Bi2Te3 and Bi2Se3 was imaged by electron backscatter diffraction (EBSD) and scanning X-ray diffraction microscopy (SXRM). The crystal orientation at the surface, determined by EBSD, is correlated with the surface topography, which shows triangular pyramidal features with edges oriented in two different orientations rotated in the surface plane by 60°. The bulk crystal orientation is mapped out using SXRM by measuring the diffracted X-ray intensity of an asymmetric Bragg peak using a nano-focused X-ray beam scanned over the sample. By comparing bulk- and surface-sensitive measurements of the same area, buried twin domains not visible on the surface are identified. The lateral twin domain size is found to increase with the film thickness.

17.
ACS Nano ; 11(2): 1246-1256, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28135069

ABSTRACT

Epitaxial growth techniques enable nearly defect free heterostructures with coherent interfaces, which are of utmost importance for high performance electronic devices. While high-vacuum technology-based growth techniques are state-of-the art, here we pursue a purely solution processed approach to obtain nanocrystals with eptaxially coherent and quasi-lattice matched inorganic ligand shells. Octahedral metal-halide clusters, respectively 0-dimensional perovskites, were employed as ligands to match the coordination geometry of the PbS cubic rock-salt lattice. Different clusters (CH3NH3+)(6-x)[M(x+)Hal6](6-x)- (Mx+ = Pb(II), Bi(III), Mn(II), In(III), Hal = Cl, I) were attached to the nanocrystal surfaces via a scalable phase transfer procedure. The ligand attachment and coherence of the formed PbS/ligand core/shell interface was confirmed by combining the results from transmission electron microscopy, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy and powder X-ray diffraction. The lattice mismatch between ligand shell and nanocrystal core plays a key role in performance. In photoconducting devices the best performance (detectivity of 2 × 1011 cm Hz 1/2/W with > 110 kHz bandwidth) was obtained with (CH3NH3)3BiI6 ligands, providing the smallest relative lattice mismatch of ca. -1%. PbS nanocrystals with such ligands exhibited in millimeter sized bulk samples in the form of pressed pellets a relatively high carrier mobility for nanocrystal solids of ∼1.3 cm2/(V s), a carrier lifetime of ∼70 µs, and a low residual carrier concentration of 2.6 × 1013 cm-3. Thus, by selection of ligands with appropriate geometry and bond lengths optimized quasi-epitaxial ligand shells were formed on nanocrystals, which are beneficial for applications in optoelectronics.

18.
J Phys Chem C Nanomater Interfaces ; 120(35): 19848-19855, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27635186

ABSTRACT

While galvanic exchange is commonly applied to metallic nanoparticles, recently its applicability was expanded to metal-oxides. Here the galvanic exchange is studied in metal/metal-oxide core/shell nanocrystals. In particular Sn/SnO2 is treated by Ag+, Pt2+, Pt4+, and Pd2+. The conversion dynamics is monitored by in situ synchrotron X-ray diffraction. The Ag+ treatment converts the Sn cores to the intermetallic Ag x Sn (x ∼ 4) phase, by changing the core's crystal structure. For the analogous treatment by Pt2+, Pt4+, and Pd2+, such a galvanic exchange is not observed. This different behavior is caused by the semipermeability of the naturally formed SnO2 shell, which allows diffusion of Ag+ but protects the nanocrystal cores from oxidation by Pt and Pd ions.

19.
Cryst Growth Des ; 16(7): 3647-3655, 2016 Jul 06.
Article in English | MEDLINE | ID: mdl-27418882

ABSTRACT

The appearance of surface-induced phases of molecular crystals is a frequently observed phenomenon in organic electronics. However, despite their fundamental importance, the origin of such phases is not yet fully resolved. The organic molecule 6,6'-dibromoindigo (Tyrian purple) forms two polymorphs within thin films. At growth temperatures of 150 °C, the well-known bulk structure forms, while at a substrate temperature of 50 °C, a surface-induced phase is observed instead. In the present work, the crystal structure of the surface-induced polymorph is solved by a combined experimental and theoretical approach using grazing incidence X-ray diffraction and molecular dynamics simulations. A comparison of both phases reveals that π-π stacking and hydrogen bonds are common motifs for the intermolecular packing. In-situ temperature studies reveal a phase transition from the surface-induced phase to the bulk phase at a temperature of 210 °C; the irreversibility of the transition indicates that the surface-induced phase is metastable. The crystallization behavior is investigated ex-situ starting from the sub-monolayer regime up to a nominal thickness of 9 nm using two different silicon oxide surfaces; island formation is observed together with a slight variation of the crystal structure. This work shows that surface-induced phases not only appear for compounds with weak, isotropic van der Waals bonds, but also for molecules exhibiting strong and highly directional hydrogen bonds.

20.
Nanotechnology ; 27(5): 055705, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26753909

ABSTRACT

Within the quest for direct band-gap group IV materials, strain engineering in germanium is one promising route. We present a study of the strain distribution in single, suspended germanium nanowires using nanofocused synchrotron radiation. Evaluating the probed Bragg reflection for different illumination positions along the nanowire length results in corresponding strain components as well as the nanowire's tilting and bending. By using these findings we determined the complete strain state with the help of finite element modelling. The resulting information provides us with the possibility of evaluating the validity of the strain investigations following from Raman scattering experiments which are based on the assumption of purely uniaxial strain.

SELECTION OF CITATIONS
SEARCH DETAIL
...