Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 4038, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32132603

ABSTRACT

Physical properties of nanoclusters, nanostructures and self-assembled nanodots, which in turn are concomitantly dependent upon the morphological properties, can be modulated for functional purposes. Here, in this article, magnetic nanodots of Fe on semiconductor TiO2 nanotubes (TNTs) are investigated with time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS) as a function of wavelength, chosen from a set of three TNT templates with different correlation lengths. The results are found corroborating with the localized scanning electron microscopy (SEM) images. As we probe the inside and the near-surface region of the Fe-dotted TNTs with respect to their homogeneity, surface distortion and long-range order using TOF-GISANS, gradual aberrations at the top of the near-surface region are identified. Magnetization measurements as a function of temperature and field do not show a typical ferromagnetic behavior but rather a supermagnetic one that is expected from a nonhomogeneous distribution of Fe-dots in the intertubular crevasses.

2.
IUCrJ ; 7(Pt 2): 268-275, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148854

ABSTRACT

Efficient infiltration of a mesoporous titania matrix with conducting organic polymers or small molecules is one key challenge to overcome for hybrid photovoltaic devices. A quantitative analysis of the backfilling efficiency with time-of-flight grazing incidence small-angle neutron scattering (ToF-GISANS) and scanning electron microscopy (SEM) measurements is presented. Differences in the morphology due to the backfilling of mesoporous titania thin films are compared for the macromolecule poly[4,8-bis-(5-(2-ethyl-hexyl)-thio-phen-2-yl)benzo[1,2-b;4,5-b']di-thio-phene-2,6-diyl-alt-(4-(2-ethyl-hexyl)-3-fluoro-thieno[3,4-b]thio-phene-)-2-carboxyl-ate-2-6-diyl)] (PTB7-Th) and the heavy-element containing small molecule 2-pinacol-boronate-3-phenyl-phen-anthro[9,10-b]telluro-phene (PhenTe-BPinPh). Hence, a 1.7 times higher backfilling efficiency of almost 70% is achieved for the small molecule PhenTe-BPinPh compared with the polymer PTB7-Th despite sharing the same volumetric mass density. The precise characterization of structural changes due to backfilling reveals that the volumetric density of backfilled materials plays a minor role in obtaining good backfilling efficiencies and interfaces with large surface contact.

3.
J Colloid Interface Sci ; 504: 356-362, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28582753

ABSTRACT

ZnO nanoparticles (NPs) are highly relevant for various industrial applications, however, after synthesis of the NPs residual chemicals need to be removed from the colloidal raw product by washing, as they may influence the performance of the final device. In the present study we focus on the effect of washing by antisolvent flocculation with subsequent redispersion of the NPs on the stabilizing acetate shell. Purification of the ZnO nanoparticles is reported to be optimal with respect to zeta potential that has a maximum after one washing cycle. In this work, we will shed light on this observation using small angle X-ray and neutron scattering (SAXS, SANS) by demonstrating that after the first washing cycle the content of acetate in the ligand shell around the ZnO NPs increases. In detail, it was observed that the diffuse acetate shell shrinks to the size of a monolayer upon washing but the acetate content of this monolayer is higher than within the diffuse shell of the particles of the native dispersion. A second washing cycle reduces the acetate concentration within the stabilizing shell and the stability of the dispersion drops accordingly. After another (third) washing cycle strong agglomeration was observed for all investigated samples.

4.
J Chem Phys ; 145(23): 234503, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27984867

ABSTRACT

We have measured the dynamics of water confined in a porous magnesium carbonate material, Upsalite®, using the high-resolution neutron backscattering spectrometer SPHERES. We found quasielastic scattering that does not flatten out up to 360 K, which means that the dynamics of water are much slower than in other matrix materials. Specifically, a single Lorentzian line could be fitted to the quasielastic part of the acquired spectra between 220 and 360 K. This, accompanied by an elastic line from dynamically frozen water present at all experimental temperatures, even above the melting point, signaled a significant amount of bound or slow water.

5.
J Phys Chem B ; 118(29): 8808-18, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24950992

ABSTRACT

Aqueous suspensions of platelet-like shaped tripalmitin nanocrystals are studied here at high tripalmitin concentrations (10 wt % tripalmitin) for the first time by a combination of small-angle X-ray and neutron scattering (SAXS and SANS). The suspensions are stabilized by different lecithins, namely, DLPC, DOPC, and the lecithin blend S100. At such high concentrations the platelets start to self-assemble in stacks, which causes interference maxima at low Q-values in the SAXS and SANS patterns, respectively. It is found that the stack-related interference maxima are more pronounced for the suspension stabilized with DOPC and in particular DLPC, compared to suspensions stabilized by S100. By use of the X-ray and neutron powder pattern simulation analysis (XNPPSA), the SAXS and SANS patterns of the native tripalmitin suspensions could only be reproduced simultaneously when assuming the presence of both isolated nanocrystals and stacks of nanocrystals of different size in the simulation model of the dispersions. By a fit of the simulated SAXS and SANS patterns to the experimental data, a distribution of the stack sizes and their volume fractions is determined. The volume fraction of stacklike platelet assemblies is found to rise from 70% for S100-stabilized suspensions to almost 100% for the DLPC-stabilized suspensions. The distribution of the platelet thicknesses could be determined with molecular resolution from a combined analysis of the SAXS and SANS patterns of the corresponding diluted tripalmitin (3 wt %) suspensions. In accordance with microcalorimetric data, it could be concluded that the platelets in the suspensions stabilized with DOPC, and in particular DLPC, are significantly thinner than those stabilized with S100. The DLPC-stabilized suspensions exhibit a significantly narrower platelet thickness distribution compared to DOPC- and S100-stabilized suspensions. The smaller thicknesses for the DLPC- and DOPC-stabilized platelets explain their higher tendency to self-assemble in stacks. The finding that the nanoparticles of the suspension stabilized by the saturated lecithin DLPC crystallize in the stable ß-tripalmitin modification with its characteristic platelet-like shape is surprising and can be explained by the fact that the main phase transformation temperature for DLPC is, as for unsaturated lecithins like DOPC and S100, well below the crystallization temperature of the supercooled tripalmitin emulsion droplets.


Subject(s)
Models, Molecular , Nanoparticles/chemistry , Neutron Diffraction , Scattering, Small Angle , Triglycerides/chemistry , X-Ray Diffraction , Freezing , Molecular Conformation , Suspensions
6.
Biomaterials ; 32(30): 7325-32, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21741083

ABSTRACT

Immobilization of proteins on a solid electrode is to date done by chemical cross-linking or by addition of an adjustable intermediate. In this paper we introduce a concept where a solid with variable surface properties is optimized to mediate binding of the electron-transfer protein Cytochrome c (Cyt c) by mimicking the natural binding environment. It is shown that, as a carbon-based material, boron-doped diamond can be adjusted by simple electrochemical surface treatments to the specific biochemical requirements of Cyt c. The structure and functionality of passively adsorbed Cyt c on variously terminated diamond surfaces were characterized in detail using a combination of electrochemical techniques and atomic force microscopy with single-molecule resolution. Partially oxidized diamond allowed stable immobilization of Cyt c together with high electron transfer activity, driven by a combination of electrostatic and hydrophobic interactions. This surface mimics the natural binding partner, where coarse orientation is governed by electrostatic interaction of the protein's dipole and hydrophobic interactions assist in formation of the electron transfer complex. The optimized surface mediated electron transfer kinetics around 100 times faster than those reported for other solids and even faster kinetics than on self-assembled monolayers of alkanethiols.


Subject(s)
Biomimetic Materials/chemistry , Boron/chemistry , Cytochromes c/chemistry , Diamond/chemistry , Immobilized Proteins/chemistry , Adsorption , Animals , Biomimetic Materials/metabolism , Boron/metabolism , Cytochromes c/metabolism , Diamond/metabolism , Electrochemistry , Horses , Immobilized Proteins/metabolism , Microscopy, Atomic Force , Protein Binding , Surface Properties
7.
Anal Chem ; 83(12): 4936-41, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21534601

ABSTRACT

In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are suitable for probing, manipulating, sculpting, and sensing at single digit nanoscale.


Subject(s)
Boron/chemistry , Diamond/chemistry , Microscopy, Atomic Force/methods , Nanowires/chemistry , Electrochemical Techniques/methods , Electrodes , Ferricyanides/chemistry
8.
ACS Nano ; 5(4): 3339-46, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21413786

ABSTRACT

In this report, the fabrication of all-nanocrystalline diamond (NCD) nanoelectrode arrays (NEAs) by e-beam lithography as well as of all-diamond nanoelectrode ensembles (NEEs) using nanosphere lithography is presented. In this way, nanostructuring techniques are combined with the excellent properties of diamond that are desirable for electrochemical sensor devices. Arrays and ensembles of recessed disk electrodes with radii ranging from 150 to 250 nm and a spacing of 10 µm have been fabricated. Electrochemical impedance spectroscopy as well as cyclic voltammetry was conducted to characterize arrays and ensembles with respect to different diffusion regimes. One outstanding advantage of diamond as an electrode material is the stability of specific surface terminations influencing the electron transfer kinetics. On changing the termination from hydrogen- to oxygen-terminated diamond electrode surface, we observe a dependence of the electron transfer rate constant on the charge of the analyte molecule. Ru(NH(3))(6)(+2/+3) shows faster electron transfer on oxygen than on hydrogen-terminated surfaces, while the anion IrCl(6)(-2/-3) exhibits faster electron transfer on hydrogen-terminated surfaces correlating with the surface dipole layer. This effect cannot be observed on macroscopic planar diamond electrodes and emphasizes the sensitivity of the all-diamond NEAs and NEEs. Thus, the NEAs and NEEs in combination with the efficiency and suitability of the selective electrochemical surface termination offer a new versatile system for electrochemical sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...