Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
World Neurosurg X ; 21: 100268, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38187507

ABSTRACT

Background: The brain undergoes reorganization following spinal cord injury (SCI), but little is known about how the thalamus is affected in pediatric SCIs. Purpose: To characterize microstructural alterations in the thalamus after SCI with diffusion tensor imaging (DTI) metrics. Methods: 18 pediatric participants with chronic SCI (8-20 years) were stratified using the American Spinal Injury Association Impairment Scale (AIS) into groups: A, B, and C/D. DTI of the brain used a 3 T Siemens Verio MRI using the parameters: 20 directions, number of averages = 3, b = 1000 s/mm2, voxel size = 1.8 mm × 1.8 mm, slice thickness = 5 mm, TE = 95 ms, TR = 4300 ms, 30 slices, FOV = 230 × 230 mm2, matrix = 128 × 128, acquisition time = 4:45 min. Diffusion data was processed to generate DTI metrics FA, MD, AD, and RD. Data analysis: DTI metrics were acquired by superimposing the AAL3 thalamic atlas onto participant diffusion images registered to MNI152 space. We utilized a multiple Mann-Whitney U-test to compare between AIS groups, considering values of p ≤ 0.05 as significant. Results: FA, AD, RD, and MD significantly differed in thalamic nuclei between AIS groups A vs B and B vs C/D. Significant nuclei include the right ventral anterior, left intralaminar, bilateral lateral pulvinar, and right lateral geniculate. Conclusion: Our findings suggest the presence of microstructural alterations based on SCI severity in pediatric patients. These results are encouraging and warrant further study.

2.
AJNR Am J Neuroradiol ; 42(9): 1727-1734, 2021 09.
Article in English | MEDLINE | ID: mdl-34326104

ABSTRACT

BACKGROUND AND PURPOSE: Multi-parametric MRI, provides a variety of biomarkers sensitive to white matter integrity, However, spinal cord MRI data in pediatrics is rare compared to adults. The purpose of this work was 3-fold: 1) to develop a processing pipeline for atlas-based generation of the typically developing pediatric spinal cord WM tracts, 2) to derive atlas-based normative values of the DTI indices for various WM pathways, and 3) to investigate age-related changes in the obtained normative DTI indices along the extracted tracts. MATERIALS AND METHODS: DTI scans of 30 typically developing subjects (age range, 6-16 years) were acquired on a 3T MR imaging scanner. The data were registered to the PAM50 template in the Spinal Cord Toolbox. Next, the DTI indices for various WM regions were extracted at a single section centered at the C3 vertebral body in all the 30 subjects. Finally, an ANOVA test was performed to examine the effects of the following: 1) laterality, 2) functionality, and 3) age, with DTI-derived indices in 34 extracted WM regions. RESULTS: A postprocessing pipeline was developed and validated to delineate pediatric spinal cord WM tracts. The results of ANOVA on fractional anisotropy values showed no effect for laterality (P = .72) but an effect for functionality (P < .001) when comparing the 30 primary WM labels. There was a significant (P < .05) effect of age and maturity of the left spinothalamic tract on mean diffusivity, radial diffusivity, and axial diffusivity values. CONCLUSIONS: The proposed automated pipeline in this study incorporates unique postprocessing steps followed by template registration and quantification of DTI metrics using atlas-based regions. This method eliminates the need for manual ROI analysis of WM tracts and, therefore, increases the accuracy and speed of the measurements.


Subject(s)
Pediatrics , White Matter , Adolescent , Adult , Anisotropy , Child , Diffusion Tensor Imaging , Humans , Spinal Cord/diagnostic imaging , White Matter/diagnostic imaging
3.
AJNR Am J Neuroradiol ; 42(4): 787-793, 2021 04.
Article in English | MEDLINE | ID: mdl-33574102

ABSTRACT

BACKGROUND AND PURPOSE: The National Institute of Neurological Disorders and Stroke common data elements initiative was created to provide a consistent method for recording and reporting observations related to neurologic diseases in clinical trials. The purpose of this study is to validate the subset of common data elements related to MR imaging evaluation of acute spinal cord injury. MATERIALS AND METHODS: Thirty-five cervical and thoracic MR imaging studies of patients with acute spinal cord injury were evaluated independently in 2 rounds by 5 expert reviewers. Intra- and interrater agreement were calculated for 17 distinct MR imaging observations related to spinal cord injury. These included ordinal, categoric, and continuous measures related to the length and location of spinal cord hemorrhage and edema as well as spinal canal and cord measurements. Level of agreement was calculated using the interclass correlation coefficient and kappa. RESULTS: The ordinal common data elements spinal cord injury elements for lesion center and rostral or caudal extent of edema or hemorrhage demonstrated agreement ranging from interclass correlation coefficient 0.68 to 0.99. Reproducibility ranged from 0.95 to 1.00. Moderate agreement was observed for absolute length of hemorrhage and edema (0.54 to 0.60) with good reproducibility (0.78 to 0.83). Agreement for the Brain and Spinal Injury Center score showed the lowest interrater agreement with an overall kappa of 0.27 (0.20, 0.34). For 7 of the 8 variables related to spinal cord injury, agreement improved between the first and second evaluation. Continuous diameter measures of the spinal cord and spinal canal using interclass correlation coefficient varied substantially (0.23 to 0.83). CONCLUSIONS: Agreement was more consistent for the ordinal measures of spinal cord injury than continuous measures. Good to excellent agreement on length and location of spinal cord hemorrhage and edema can be achieved with ordinal measures alone.


Subject(s)
Common Data Elements , Spinal Cord Injuries , Cervical Vertebrae , Humans , Magnetic Resonance Imaging , National Institute of Neurological Disorders and Stroke (U.S.) , Reproducibility of Results , Spinal Cord , Spinal Cord Injuries/diagnostic imaging , United States/epidemiology
4.
AJNR Am J Neuroradiol ; 37(11): 2150-2157, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27418470

ABSTRACT

BACKGROUND AND PURPOSE: DTI data of the normal healthy spinal cord in children are limited compared with adults and are typically focused on the cervical spinal cord. The purpose of this study was the following: to investigate the feasibility of obtaining repeatable DTI parameters along the entire cervical and thoracic spinal cord as a function of age in typically developing pediatric subjects; to analyze the DTI parameters among different transverse levels of the cervical and thoracic spinal cord; and to examine the sex differences in DTI parameters along the cervical and thoracic spinal cord. MATERIALS AND METHODS: Twenty-two subjects underwent 2 identical scans by using a 3T MR imaging scanner. Axial diffusion tensor images were acquired by using 2 overlapping slabs to cover the cervical and thoracic spinal cord. After postprocessing, DTI parameters were calculated by using ROIs drawn on the whole cord along the entire spinal cord for both scans. RESULTS: An increase in fractional anisotropy and a decrease in mean diffusivity, axial diffusivity, and radial diffusivity were observed with age along the entire spinal cord. Significantly lower fractional anisotropy and higher mean diffusivity values were observed in the lower cervical cord compared with the upper cervical cord. Axial diffusivity values in the cervical cord were higher compared with the thoracic cord. No statistically significant sex differences were observed for all DTI parameters. There was a moderate-to-strong repeatability for all DTI parameters. CONCLUSIONS: This study provides an initial understanding of DTI values of the spinal cord relevant to age and sex and shows that obtaining repeatable DTI values of the entire cord in children is feasible.

6.
Spinal Cord ; 51(1): 75-81, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23147133

ABSTRACT

STUDY DESIGN: A prospective repeated measures multicenter study to determine reliability at individual spinal levels when applied to young persons with spinal cord injury (SCI). OBJECTIVES: To evaluate intra- and inter-rater agreement of repeated motor and sensory scores at individual spinal levels. SETTING: Shriners Hospitals for Children--Philadelphia and Chicago, USA. METHODS: A total 189 youth with complete and incomplete SCI underwent four neurological exams by two different raters. Agreement between and within raters for each myotome and dermatome was evaluated for complete and incomplete SCI separately. Intraclass correlation coefficients and 95% confidence intervals were calculated. RESULTS: Overall, both intra- and inter-rater agreement resulted in moderate-to-high agreement among myotomes. Subjects with complete SCI had moderate agreement for light touch (LT) and pin prick (PP) testing, whereas subjects with incomplete SCI had >60.0% of dermatomes resulting in poor agreement for PP testing. CONCLUSION: Overall, moderate-to-high agreement was found for muscle strength comparisons and moderate-to-poor agreement was found for PP and LT.


Subject(s)
Movement/physiology , Neurologic Examination/statistics & numerical data , Psychometrics , Sensation/physiology , Spinal Cord Injuries/diagnosis , Adolescent , Child , Data Interpretation, Statistical , Female , Humans , Male , Observer Variation , Physical Stimulation , Prospective Studies , Reproducibility of Results , Spinal Cord Injuries/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...