Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Phys Rev Lett ; 132(5): 056102, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364173

ABSTRACT

The phonon dispersion of ice VII and that of its proton-ordered analog ice VIII are investigated through a combination of inelastic x-ray scattering (IXS) measurements and first-principles calculations of the oxygen sublattice dynamic structure factor. Particular attention is devoted to hydrogen-disorder in ice VII, addressed theoretically through a statistical ensemble of fictitious ordered supercell configurations. Similar phonon densities of states are found in both phases but are significantly less structured in the case of ice VII. Our data further show that, despite a full proton disorder, the acoustic phonon branches in this phase clearly inherit the periodicity of its body-centered cubic oxygen lattice. The calculations predict, however, the presence of gap openings in the one-atom phonon dispersion. These predictions are supported by revisiting the analysis of previous single-crystal IXS measurements along the longitudinal [111] branch of ice VII.

2.
J Synchrotron Radiat ; 28(Pt 2): 392-403, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33650550

ABSTRACT

Microbeam radiation therapy (MRT) is a developing radiotherapy, based on the use of beams only a few tens of micrometres wide, generated by synchrotron X-ray sources. The spatial fractionation of the homogeneous beam into an array of microbeams is possible using a multislit collimator (MSC), i.e. a machined metal block with regular apertures. Dosimetry in MRT is challenging and previous works still show differences between calculated and experimental dose profiles of 10-30%, which are not acceptable for a clinical implementation of treatment. The interaction of the X-rays with the MSC may contribute to the observed discrepancies; the present study therefore investigates the dose contribution due to radiation interaction with the MSC inner walls and radiation leakage of the MSC. Dose distributions inside a water-equivalent phantom were evaluated for different field sizes and three typical spectra used for MRT studies at the European Synchrotron Biomedical beamline ID17. Film dosimetry was utilized to determine the contribution of radiation interaction with the MSC inner walls; Monte Carlo simulations were implemented to calculate the radiation leakage contribution. Both factors turned out to be relevant for the dose deposition, especially for small fields. Photons interacting with the MSC walls may bring up to 16% more dose in the valley regions, between the microbeams. Depending on the chosen spectrum, the radiation leakage close to the phantom surface can contribute up to 50% of the valley dose for a 5 mm × 5 mm field. The current study underlines that a detailed characterization of the MSC must be performed systematically and accurate MRT dosimetry protocols must include the contribution of radiation leakage and radiation interaction with the MSC in order to avoid significant errors in the dose evaluation at the micrometric scale.


Subject(s)
Radiometry , Synchrotrons , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , X-Rays
3.
Phys Med ; 65: 106-113, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31450120

ABSTRACT

PURPOSE: Microbeam radiation therapy is a developing technique that promises superior tumour control and better normal tissue tolerance using spatially fractionated X-ray beams only tens of micrometres wide. Radiochromic film dosimetry at micrometric scale was performed using a microdensitometer, but this instrument presents limitations in accuracy and precision, therefore the use of a microscope is suggested as alternative. The detailed procedures developed to use the two devices are reported allowing a comparison. METHODS: Films were irradiated with single microbeams and with arrays of 50 µm wide microbeams spaced by a 400 µm pitch, using a polychromatic beam with mean energy of 100 keV. The film dose measurements were performed using two independent instruments: a microdensitometer (MDM) and an optical microscope (OM). RESULTS: The mean values of the absolute dose measured with the two instruments differ by less than 5% but the OM provides reproducibility with a standard deviation of 1.2% compared to up to 7% for the MDM. The resolution of the OM was determined to be ~ 1 to 2 µm in both planar directions able to resolve pencil beams irradiation, while the MDM reaches at the best 20 µm resolution along scanning direction. The uncertainties related to the data acquisition are 2.5-3% for the OM and 9-15% for the MDM. CONCLUSION: The comparison between the two devices validates that the OM provides equivalent results to the MDM with better precision, reproducibility and resolution. In addition, the possibility to study dose distributions in two-dimensions over wider areas definitely sanctions the OM as substitute of the MDM.


Subject(s)
Film Dosimetry/instrumentation , Microscopy/instrumentation , Microtechnology/instrumentation , Optical Devices , Calibration , Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Uncertainty
4.
J Synchrotron Radiat ; 25(Pt 2): 580-591, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29488940

ABSTRACT

An end-station for resonant inelastic X-ray scattering and (resonant) X-ray emission spectroscopy at beamline ID20 of ESRF - The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high-energy-resolution applications, including partial fluorescence yield or high-energy-resolution fluorescence detected X-ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non-resonant inelastic X-ray scattering measurements of valence electron excitations.

5.
Phys Rev Lett ; 119(7): 079903, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949658

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.116.185501.

6.
J Synchrotron Radiat ; 24(Pt 2): 521-530, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28244449

ABSTRACT

An end-station for X-ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end-station is dedicated to the study of shallow core electronic excitations using non-resonant inelastic X-ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X-ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end-station provides an unprecedented instrument for X-ray Raman scattering, which is a spectroscopic tool of great interest for the study of low-energy X-ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.

7.
Sci Rep ; 7: 41512, 2017 01 30.
Article in English | MEDLINE | ID: mdl-28134296

ABSTRACT

Antiferroelectric lead zirconate is the key ingredient in modern ferroelectric and piezoelectric functional solid solutions. By itself it offers opportunities in new-type non-volatile memory and energy storage applications. A highly useful and scientifically puzzling feature of this material is the competition between the ferro- and antiferroelectric phases due to their energetic proximity, which leads to a challenge in understanding of the critical phenomena driving the formation of the antiferroelectric structure. We show that application of hydrostatic pressure drastically changes the character of critical lattice dynamics and enables the soft-mode-driven incommensurate phase transition sequence in lead zirconate. In addition to the long known cubic and antiferroelectric phases we identify the new non-modulated phase serving as a bridge between the cubic and the incommensurate phases. The pressure effect on ferroelectric and incommensurate critical dynamics shows that lead zirconate is not a single-instability-driven system.

8.
Phys Rev Lett ; 117(10): 107001, 2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27636488

ABSTRACT

We have studied the magnetic excitations of electron-doped Sr_{2-x}La_{x}IrO_{4} (0≤x≤0.10) using resonant inelastic x-ray scattering at the Ir L_{3} edge. The long-range magnetic order is rapidly lost with increasing x, but two-dimensional short-range order (SRO) and dispersive magnon excitations with nearly undiminished spectral weight persist well into the metallic part of the phase diagram. The magnons in the SRO phase are heavily damped and exhibit anisotropic softening. Their dispersions are well described by a pseudospin-1/2 Heisenberg model with exchange interactions whose spatial range increases with doping. We also find a doping-independent high-energy magnetic continuum, which is not described by this model. The spin-orbit excitons arising from the pseudospin-3/2 manifold of the Ir ions broaden substantially in the SRO phase, but remain largely separated from the low-energy magnons. Pseudospin-1/2 models are therefore a good starting point for the theoretical description of the low-energy magnetic dynamics of doped iridates.

9.
Phys Rev Lett ; 117(3): 037201, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27472131

ABSTRACT

Using resonant magnetic x-ray scattering we address the unresolved nature of the magnetic ground state and the low-energy effective Hamiltonian of Sm_{2}Ir_{2}O_{7}, a prototypical pyrochlore iridate with a finite temperature metal-insulator transition. Through a combination of elastic and inelastic measurements, we show that the magnetic ground state is an all-in-all-out (AIAO) antiferromagnet. The magnon dispersion indicates significant electronic correlations and can be well described by a minimal Hamiltonian that includes Heisenberg exchange [J=27.3(6) meV] and Dzyaloshinskii-Moriya interactions [D=4.9(3) meV], which provides a consistent description of the magnetic order and excitations. In establishing that Sm_{2}Ir_{2}O_{7} has the requisite inversion symmetry preserving AIAO magnetic ground state, our results support the notion that pyrochlore iridates may host correlated Weyl semimetals.

10.
Phys Rev Lett ; 116(18): 185501, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27203332

ABSTRACT

Comprehensive studies of lattice dynamics in the ferromagnetic semiconductor EuO have been performed by a combination of inelastic x-ray scattering, nuclear inelastic scattering, and ab initio calculations. A remarkably large broadening of the transverse acoustic phonons was discovered at temperatures above and below the Curie temperature T_{C}=69 K. This result indicates a surprisingly strong momentum-dependent spin-phonon coupling induced by the spin dynamics in EuO.

11.
J Synchrotron Radiat ; 22(6): 1555-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26524322

ABSTRACT

A closed-circle miniature flow cell for high X-ray photon flux experiments on radiation-sensitive liquid samples is presented. The compact cell is made from highly inert material and the flow is induced by a rotating magnetic stir bar, which acts as a centrifugal pump inside the cell. The cell is ideal for radiation-sensitive yet precious or hazardous liquid samples, such as concentrated acids or bases. As a demonstration of the cell's capabilities, X-ray Raman scattering spectroscopy data on the oxygen K-edge of liquid water under ambient conditions are presented.

12.
J Phys Condens Matter ; 27(33): 335901, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26235457

ABSTRACT

We report the results of an inelastic x-ray scattering study of the lattice dynamics in the paraelectric phase of the antiferroelectric lead hafnate PbHfO3. The study reveals an avoided crossing between the transverse acoustic and transverse optic phonon modes propagating along the [1 1 0] direction with [1 -1 0] polarization. The static susceptibility with respect to the generally incommensurate modulations is shown to increase on cooling for the entire Γ-M direction. We consider different approaches to the data analysis that correspond to different models for the temperature evolution of the dynamic susceptibility function. A number of similarities and differences between the lattice dynamics of PbHfO3 and PbZrO3 are described.

13.
J Phys Condens Matter ; 27(32): 325702, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26214712

ABSTRACT

X-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of the latest experimental and theoretical studies on the role of phonons in the superconducting pnictide compounds.

14.
J Synchrotron Radiat ; 22(2): 400-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25723942

ABSTRACT

A compilation of procedures for planning and performing X-ray Raman scattering (XRS) experiments and analyzing data obtained from them is presented. In particular, it is demonstrated how to predict the overall shape of the spectra, estimate detection limits for dilute samples, and how to normalize the recorded spectra to absolute units. In addition, methods for processing data from multiple-crystal XRS spectrometers with imaging capability are presented, including a super-resolution method that can be used for direct tomography using XRS spectra as the contrast. An open-source software package with these procedures implemented is also made available.

15.
Phys Rev Lett ; 112(17): 176402, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24836260

ABSTRACT

In CaIrO3, electronic correlation, spin-orbit coupling, and tetragonal crystal field splitting are predicted to be of comparable strength. However, the nature of its ground state is still an object of debate, with contradictory experimental and theoretical results. We probe the ground state of CaIrO3 and assess the effective tetragonal crystal field splitting and spin-orbit coupling at play in this system by means of resonant inelastic x-ray scattering. We conclude that insulating CaIrO3 is not a j(eff) = 1/2 iridate and discuss the consequences of our finding to the interpretation of previous experiments. In particular, we clarify how the Mott insulating state in iridates can be readily extended beyond the j(eff) = 1/2 ground state.

16.
Phys Rev Lett ; 112(2): 025502, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24484025

ABSTRACT

We measured the density of vibrational states (DOS) and the specific heat of various glassy and crystalline polymorphs of SiO2. The typical (ambient) glass shows a well-known excess of specific heat relative to the typical crystal (α-quartz). This, however, holds when comparing a lower-density glass to a higher-density crystal. For glassy and crystalline polymorphs with matched densities, the DOS of the glass appears as the smoothed counterpart of the DOS of the corresponding crystal; it reveals the same number of the excess states relative to the Debye model, the same number of all states in the low-energy region, and it provides the same specific heat. This shows that glasses have higher specific heat than crystals not due to disorder, but because the typical glass has lower density than the typical crystal.

17.
Nat Mater ; 12(11): 1028-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23975057

ABSTRACT

The need for both high electrical conductivity and low thermal conductivity creates a design conflict for thermoelectric systems, leading to the consideration of materials with complicated crystal structures. Rattling of ions in cages results in low thermal conductivity, but understanding the mechanism through studies of the phonon dispersion using momentum-resolved spectroscopy is made difficult by the complexity of the unit cells. We have performed inelastic X-ray and neutron scattering experiments that are in remarkable agreement with our first-principles density-functional calculations of the phonon dispersion for thermoelectric Na(0.8)CoO2, which has a large-period superstructure. We have directly observed an Einstein-like rattling mode at low energy, involving large anharmonic displacements of the sodium ions inside multi-vacancy clusters. These rattling modes suppress the thermal conductivity by a factor of six compared with vacancy-free NaCoO2. Our results will guide the design of the next generation of materials for applications in solid-state refrigerators and power recovery.

18.
Sci Rep ; 3: 2518, 2013.
Article in English | MEDLINE | ID: mdl-23989304

ABSTRACT

The high frequency dynamics of Indomethacin and Celecoxib glasses has been investigated by inelastic x-ray scattering, accessing a momentum-energy region still unexplored in amorphous pharmaceuticals. We find evidence of phonon-like acoustic dynamics, and determine the THz behavior of sound velocity and acoustic attenuation. Connections with ordinary sound propagation are discussed, along with the relation between fast and slow degrees of freedom as represented by non-ergodicity factor and kinetic fragility, respectively.


Subject(s)
Indomethacin/chemistry , Indomethacin/radiation effects , Pyrazoles/chemistry , Pyrazoles/radiation effects , Sound , Sulfonamides/chemistry , Sulfonamides/radiation effects , Terahertz Radiation , Celecoxib , Molecular Conformation/radiation effects , Radiation Dosage
19.
Sci Rep ; 3: 1203, 2013.
Article in English | MEDLINE | ID: mdl-23383373

ABSTRACT

Sudden changes in the dynamical properties of a supercritical fluid model have been found as a function of pressure and temperature (T/T(c) = 2-5 and P/P(c) = 10-10(3)), striving with the notion of a single phase beyond the critical point established by thermodynamics. The sound propagation in the Terahertz frequency region reveals a sharp dynamic crossover between the gas like and the liquid like regimes along several isotherms, which involves, at sufficiently low densities, the interplay between purely acoustic waves and heat waves. Such a crossover allows one to determine a dynamic line in the phase diagram which exhibits a very tight correlation with a number of thermodynamic observables, showing that the supercritical state is remarkably more complex than thought so far.

20.
Phys Rev Lett ; 108(4): 045502, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400861

ABSTRACT

We have measured phonon dispersion relations of the high-pressure phase cerium-oC4 (α' phase with the α-uranium crystal structure) at 6.5 GPa by using inelastic x-ray scattering. Pronounced phonon anomalies are observed, which are remarkably similar to those of α-U. First-principles electronic structure calculations reproduce the anomalies and allow us to identify strong electron-phonon coupling as their origin. At the low-pressure end of its stability range, Ce-oC4 is on the verge of a lattice-dynamical instability and possibly a charge density wave. The superconducting transition temperatures of the fcc, oC4, and mC4 phases of Ce have been calculated, and the superconductivity observed experimentally by Wittig and Probst is attributed to the oC4 phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...