Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-18, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37646701

ABSTRACT

NS3-4A, a serine protease, is a primary target for drug development against Hepatitis C Virus (HCV). However, the effectiveness of potent next-generation protease inhibitors is limited by the emergence of mutations and resulting drug resistance. To address this, in this study a structure-based drug design approach is employed to screen a large library of 7320 natural compounds against both wild-type and mutant variants of NS3-4A protease. Telaprevir, a widely used protease inhibitor, was recruited as the control drug. The top 10 compounds with favorable binding affinities underwent drug-likeness evaluation. Based on ADMET studies, complexes of NP_024762 and NP_006776 were selected for molecular dynamic simulations. Principal component analysis (PCA) was employed to explore the conformational space and protein dynamics of the protein-ligand complex using a Free Energy Landscape (FEL) approach. The cosine values obtained from FEL analysis ranged from 0 to 1, and eigenvectors with cosine values below 0.2 were chosen for further analysis. To forecast binding free energies and evaluate energy contributions per residue, the MM-PBSA method was employed. The results highlighted the crucial role of amino acids in the catalytic domain for the binding of the protease with phytochemicals. Stable associations between the top compounds and the target protease were confirmed by the formation of hydrogen bonds in the binding pocket involving residues: His1057, Gly1137, Ser1139, and Ala1157. These findings suggest the potential of these compounds for further validation through biological evaluation.Communicated by Ramaswamy H. Sarma.

2.
Front Mol Biosci ; 10: 1106128, 2023.
Article in English | MEDLINE | ID: mdl-36911525

ABSTRACT

The viral disease dengue is transmitted by the Aedes mosquito and is commonly seen to occur in the tropical and subtropical regions of the world. It is a growing public health concern. To date, other than supportive treatments, there are no specific antiviral treatments to combat the infection. Therefore, finding potential compounds that have antiviral activity against the dengue virus is essential. The NS2B-NS3 dengue protease plays a vital role in the replication and viral assembly. If the functioning of this protease were to be obstructed then viral replication would be halted. As a result, this NS2B-NS3 proves to be a promising target in the process of anti-viral drug design. Through this study, we aim to provide suggestions for compounds that may serve as potent inhibitors of the dengue NS2B-NS3 protein. Here, a ligand-based pharmacophore model was generated and the ZINC database was screened through ZINCPharmer to identify molecules with similar features. 2D QSAR model was developed and validated using reported 4-Benzyloxy Phenyl Glycine derivatives and was utilized to predict the IC50 values of unknown compounds. Further, the study is extended to molecular docking to investigate interactions at the active pocket of the target protein. ZINC36596404 and ZINC22973642 showed a predicted pIC50 of 6.477 and 7.872, respectively. They also showed excellent binding with NS3 protease as is evident from their binding energy of -8.3and -8.1 kcal/mol, respectively. ADMET predictionsofcompounds have shown high drug-likeness. Finally, the molecular dynamic simulations integrated with MM-PBSA binding energy calculations confirmedboth identified ZINC compounds as potential hit moleculeswith good stability.

3.
Nat Commun ; 13(1): 5415, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109503

ABSTRACT

Chronic activation of stress hormones such as glucocorticoids leads to skeletal muscle wasting in mammals. However, the molecular events that mediate glucocorticoid-induced muscle wasting are not well understood. Here, we show that SIRT6, a chromatin-associated deacetylase indirectly regulates glucocorticoid-induced muscle wasting by modulating IGF/PI3K/AKT signaling. Our results show that SIRT6 levels are increased during glucocorticoid-induced reduction of myotube size and during skeletal muscle atrophy in mice. Notably, overexpression of SIRT6 spontaneously decreases the size of primary myotubes in a cell-autonomous manner. On the other hand, SIRT6 depletion increases the diameter of myotubes and protects them against glucocorticoid-induced reduction in myotube size, which is associated with enhanced protein synthesis and repression of atrogenes. In line with this, we find that muscle-specific SIRT6 deficient mice are resistant to glucocorticoid-induced muscle wasting. Mechanistically, we find that SIRT6 deficiency hyperactivates IGF/PI3K/AKT signaling through c-Jun transcription factor-mediated increase in IGF2 expression. The increased activation, in turn, leads to nuclear exclusion and transcriptional repression of the FoxO transcription factor, a key activator of muscle atrophy. Further, we find that pharmacological inhibition of SIRT6 protects against glucocorticoid-induced muscle wasting in mice by regulating IGF/PI3K/AKT signaling implicating the role of SIRT6 in glucocorticoid-induced muscle atrophy.


Subject(s)
Proto-Oncogene Proteins c-akt , Sirtuins , Animals , Chromatin , Glucocorticoids/pharmacology , Mammals/metabolism , Mice , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/prevention & control , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Somatomedins/metabolism , Transcription Factors
4.
Comput Biol Med ; 134: 104524, 2021 07.
Article in English | MEDLINE | ID: mdl-34090015

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that has been spreading across the globe. The World Health Organization (WHO) declared it as a public health emergency. The treatment of COVID-19 has been hampered due to the lack of effective therapeutic efforts. Main Protease (Mpro) is a key enzyme in the viral replication cycle and its non-specificity to human protease makes it a potential drug target. Cyperus rotundus Linn, which belongs to the Cyperaceae family, is a traditional herbal medicine that has been widely studied for its antiviral properties. In this study, a computational approach was used to screen natural compounds from C. rotundus Linn using BIOVIA Discovery Suite and novel potential molecules against Mpro of SARS-CoV-2 were predicted. Molecular docking was performed using LibDock protocol and selected ligands were further subjected to docking analysis by CDOCKER. The docking scores of the selected ligands were compared with standard antiretroviral drugs such as lopinavir and ritonavir to assess their binding potentials. Interaction pharmacophore analysis was then performed for the compounds exhibiting good binding scores to evaluate their protein-ligand interactions. The selected protein-ligand complexes were subjected to molecular dynamics simulation for 50 ns. Results of binding free energy analysis revealed that two compounds-ß-amyrin and stigmasta-5,22-dien-3-ol-exhibited the best binding interactions and stability. Finally, absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were performed to understand the pharmacokinetic properties and safety profile of the compounds. The overall results indicate that the phytochemicals from Cyperus rotundus Linn, namely ß-amyrin and stigmasta-5,22-dien-3-ol, can be screened as potential inhibitors of SARS-CoV-2 Mpro.


Subject(s)
COVID-19 , Cyperus , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2
5.
Cell Rep ; 35(9): 109190, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34077730

ABSTRACT

Pathological lipid accumulation is often associated with enhanced uptake of free fatty acids via specific transporters in cardiomyocytes. Here, we identify SIRT6 as a critical transcriptional regulator of fatty acid transporters in cardiomyocytes. We find that SIRT6 deficiency enhances the expression of fatty acid transporters, leading to enhanced fatty acid uptake and lipid accumulation. Interestingly, the haploinsufficiency of SIRT6 is sufficient to induce the expression of fatty acid transporters and cause lipid accumulation in murine hearts. Mechanistically, SIRT6 depletion enhances the occupancy of the transcription factor PPARγ on the promoters of critical fatty acid transporters without modulating the acetylation of histone 3 at Lys 9 and Lys 56. Notably, the binding of SIRT6 to the DNA-binding domain of PPARγ is critical for regulating the expression of fatty acid transporters in cardiomyocytes. Our data suggest exploiting SIRT6 as a potential therapeutic target for protecting the heart from metabolic diseases.


Subject(s)
Fatty Acids/metabolism , PPAR gamma/metabolism , Sirtuins/metabolism , Transcription, Genetic , Adult , Animals , Biological Transport/genetics , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Disease Models, Animal , Female , HEK293 Cells , Heart Failure/genetics , Humans , Male , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , PPAR gamma/chemistry , Promoter Regions, Genetic/genetics , Protein Domains , Sirtuins/deficiency , Sirtuins/genetics
6.
Comput Biol Med ; 134: 104455, 2021 07.
Article in English | MEDLINE | ID: mdl-33962088

ABSTRACT

B-cell lymphoma 2 (BCL-2) family is one of the chief regulators of cellular apoptosis. The intricate interactions between pro-apoptotic and anti-apoptotic genes of the BCL-2 family dictate the apoptotic balance of the cell. An overexpression of the anti-apoptotic members of BCL-2 is indicative of cell death evasion and cancer metastasis. Among the four BCL-2 homology domains, the BH3 domain plays a key role in the suppression of BCL-2 expression. Therefore, BH3-mimetic drugs are currently investigated for their suitability as BCL-2 inhibitors. In the present study, we followed a structure-based pharmacophore modelling approach to identify BH3-mimetic small molecules, to formulate a more precise and targeted cancer treatment regimen. To identify proteins with similar binding features, a structure-based pharmacophore model was generated based on the structure of Bcl-2 complexed with Venetoclax (PDB-ID:6O0K). Compounds with good fitness score and pharmacophore features, screened from the ZINC database, were subjected to (i) molecular docking studies, (ii) molecular mechanics-generalized Born surface area (MM-GBSA), and (iii) absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction. From the analysis, two molecules were identified: ZINC68728276 and ZINC14166367, with docking scores of -7.323 and -8.649 kcal/mol and free binding energies (MM-GBSA) of -72.913 and -72.291 kcal/mol, respectively. The structural parameters and binding affinity of these complexes were validated through molecular dynamics simulation and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) free energy calculations and compared with Venetoclax. The results indicated stability and good binding affinity of both the compounds. The study identified ZINC68728276 and ZINC14166367 as in silico potential Bcl-2 inhibitors, which can be further considered for in vitro studies.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Molecular Docking Simulation , Molecular Dynamics Simulation , Neoplasms/drug therapy , Protein Binding , Proto-Oncogene Proteins c-bcl-2/pharmacology
7.
Nucleic Acids Res ; 47(17): 9115-9131, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31372634

ABSTRACT

Global protein synthesis is emerging as an important player in the context of aging and age-related diseases. However, the intricate molecular networks that regulate protein synthesis are poorly understood. Here, we report that SIRT6, a nuclear-localized histone deacetylase represses global protein synthesis by transcriptionally regulating mTOR signalling via the transcription factor Sp1, independent of its deacetylase activity. Our results suggest that SIRT6 deficiency increases protein synthesis in mice. Further, multiple lines of in vitro evidence suggest that SIRT6 negatively regulates protein synthesis in a cell-autonomous fashion and independent of its catalytic activity. Mechanistically, SIRT6 binds to the zinc finger DNA binding domain of Sp1 and represses its activity. SIRT6 deficiency increased the occupancy of Sp1 at key mTOR signalling gene promoters resulting in enhanced expression of these genes and activation of the mTOR signalling pathway. Interestingly, inhibition of either mTOR or Sp1 abrogated the increased protein synthesis observed under SIRT6 deficient conditions. Moreover, pharmacological inhibition of mTOR restored cardiac function in muscle-specific SIRT6 knockout mice, which spontaneously develop cardiac hypertrophy. Overall, these findings have unravelled a new layer of regulation of global protein synthesis by SIRT6, which can be potentially targeted to combat aging-associated diseases like cardiac hypertrophy.


Subject(s)
Histone Deacetylases/metabolism , Protein Biosynthesis , Sirtuins/metabolism , Sp1 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Animals , Cardiomegaly/genetics , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Histone Deacetylases/genetics , Humans , Mice , Mice, Knockout , Promoter Regions, Genetic , Signal Transduction , Sirtuins/genetics , Sp1 Transcription Factor/chemistry , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...