Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 13(10): 11382-11391, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31513370

ABSTRACT

Label-free in situ X-ray scattering from protein spherical nucleic acids (Pro-SNAs, consisting of protein cores densely functionalized with covalently bound DNA) was used to elucidate the enzymatic reaction pathway for the DNase I-induced degradation of DNA. Time-course small-angle X-ray scattering (SAXS) and gel electrophoresis reveal a two-state system with time-dependent populations of intact and fully degraded DNA in the Pro-SNAs. SAXS shows that in the fully degraded state, the DNA strands forming the outer shell of the Pro-SNA were completely digested. SAXS analysis of reactions with different Pro-SNA concentrations reveals a reaction pathway characterized by a slow, rate determining DNase I-Pro-SNA association, followed by rapid DNA hydrolysis. Molecular dynamics (MD) simulations provide the distributions of monovalent and divalent ions around the Pro-SNA, relevant to the activity of DNase I. Taken together, in situ SAXS in conjunction with MD simulations yield key mechanistic and structural insights into the interaction of DNA with DNase I. The approach presented here should prove invaluable in probing other enzyme-catalyzed reactions on the nanoscale.


Subject(s)
DNA/chemistry , Scattering, Small Angle , X-Ray Diffraction/methods , Deoxyribonuclease I/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation , Nucleic Acids/chemistry
2.
ACS Cent Sci ; 4(3): 378-386, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29632884

ABSTRACT

Protein-spherical nucleic acid conjugates (Pro-SNAs) are an emerging class of bioconjugates that have properties defined by their protein cores and dense shell of oligonucleotides. They have been used as building blocks in DNA-driven crystal engineering strategies and show promise as agents that can cross cell membranes and affect both protein and DNA-mediated processes inside cells. However, ionic environments surrounding proteins can influence their activity and conformational stability, and functionalizing proteins with DNA substantively changes the surrounding ionic environment in a nonuniform manner. Techniques typically used to determine protein structure fail to capture such irregular ionic distributions. Here, we determine the counterion radial distribution profile surrounding Pro-SNAs dispersed in RbCl with 1 nm resolution through in situ anomalous small-angle X-ray scattering (ASAXS) and classical density functional theory (DFT). SAXS analysis also reveals the radial extension of the DNA and the linker used to covalently attach the DNA to the protein surface. At the experimental salt concentration of 50 mM RbCl, Rb+ cations compensate ∼90% of the negative charge due to the DNA and linker. Above 75 mM, DFT calculations predict overcompensation of the DNA charge by Rb+. This study suggests a method for exploring Pro-SNA structure and function in different environments through predictions of ionic cloud densities as a function of salt concentration, DNA grafting density, and length. Overall, our study demonstrates that solution X-ray scattering combined with DFT can discern counterionic distribution and submolecular features of highly charged, complex nanoparticle constructs such as Pro-SNAs and related nucleic acid conjugate materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...