Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Br J Anaesth ; 130(2): 154-164, 2023 02.
Article in English | MEDLINE | ID: mdl-36428160

ABSTRACT

BACKGROUND: The novel synthetic neuroactive steroid (3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3ß-OH) blocks T-type calcium channels but does not directly modulate neuronal γ-aminobutyric acid type A (GABAA) currents like other anaesthetic neurosteroids. As 3ß-OH has sex-specific hypnotic effects in adult rats, we studied the mechanism contributing to sex differences in its effects. METHODS: We used a combination of behavioural loss of righting reflex, neuroendocrine, pharmacokinetic, in vitro patch-clamp electrophysiology, and in vivo electrophysiological approaches in wild-type mice and in genetic knockouts of the CaV3.1 T-type calcium channel isoform to study the mechanisms by which 3ß-OH and its metabolite produces sex-specific hypnotic effects. RESULTS: Adult male mice were less sensitive to the hypnotic effects of 3ß-OH compared with female mice, and these differences appeared during development. Adult males had higher 3ß-OH brain concentrations despite being less sensitive to its hypnotic effects. Females metabolised 3ß-OH into the active GABAA receptor positive allosteric modulator (3α,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3α-OH) to a greater extent than males. The 3α-OH metabolite has T-channel blocking properties with sex-specific hypnotic and pharmacokinetic effects. Sex-dependent suppression of the cortical electroencephalogram is more pronounced with 3α-OH compared with 3ß-OH. CONCLUSIONS: The sex-specific differences in the hypnotic effect of 3ß-OH in mice are attributable to differences in its peripheral metabolism into the more potent hypnotic metabolite 3α-OH.


Subject(s)
Calcium Channels, T-Type , Neurosteroids , Rats , Mice , Female , Male , Animals , Hypnotics and Sedatives/pharmacology , Steroids/pharmacology , Receptors, GABA-A
2.
Sci Adv ; 8(22): eabm5563, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35658032

ABSTRACT

Smoothened (SMO) transduces the Hedgehog (Hh) signal across the plasma membrane in response to accessible cholesterol. Cholesterol binds SMO at two sites: one in the extracellular cysteine-rich domain (CRD) and a second in the transmembrane domain (TMD). How these two sterol-binding sites mediate SMO activation in response to the ligand Sonic Hedgehog (SHH) remains unknown. We find that mutations in the CRD (but not the TMD) reduce the fold increase in SMO activity triggered by SHH. SHH also promotes the photocrosslinking of a sterol analog to the CRD in intact cells. In contrast, sterol binding to the TMD site boosts SMO activity regardless of SHH exposure. Mutational and computational analyses show that these sites are in allosteric communication despite being 45 angstroms apart. Hence, sterols function as both SHH-regulated orthosteric ligands at the CRD and allosteric ligands at the TMD to regulate SMO activity and Hh signaling.


Subject(s)
Cysteine , Hedgehog Proteins , Cholesterol/metabolism , Hedgehog Proteins/chemistry , Ligands , Sterols/chemistry
3.
Front Pharmacol ; 13: 850658, 2022.
Article in English | MEDLINE | ID: mdl-35677453

ABSTRACT

We recently reported that a neurosteroid analogue with T-channel-blocking properties (3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3ß-OH), induced hypnosis in rat pups without triggering neuronal apoptosis. Furthermore, we found that the inhibition of the CaV3.1 isoform of T-channels contributes to the hypnotic properties of 3ß-OH in adult mice. However, the specific mechanisms underlying the role of other subtypes of voltage-gated calcium channels in thalamocortical excitability and oscillations in vivo during 3ß-OH-induced hypnosis are largely unknown. Here, we used patch-clamp recordings from acute brain slices, in vivo electroencephalogram (EEG) recordings, and mouse genetics with wild-type (WT) and CaV2.3 knock-out (KO) mice to further investigate the molecular mechanisms of neurosteroid-induced hypnosis. Our voltage-clamp recordings showed that 3ß-OH inhibited recombinant CaV2.3 currents. In subsequent current-clamp recordings in thalamic slices ex vivo, we found that selective CaV2.3 channel blocker (SNX-482) inhibited stimulated tonic firing and increased the threshold for rebound burst firing in WT animals. Additionally, in thalamic slices we found that 3ß-OH inhibited spike-firing more profoundly in WT than in mutant mice. Furthermore, 3ß-OH reduced bursting frequencies in WT but not mutant animals. In ensuing in vivo experiments, we found that intra-peritoneal injections of 3ß-OH were less effective in inducing LORR in the mutant mice than in the WT mice, with expected sex differences. Furthermore, the reduction in total α, ß, and low γ EEG power was more profound in WT than in CaV2.3 KO females over time, while at 60 min after injections of 3ß-OH, the increase in relative ß power was higher in mutant females. In addition, 3ß-OH depressed EEG power more strongly in the male WT than in the mutant mice and significantly increased the relative δ power oscillations in WT male mice in comparison to the mutant male animals. Our results demonstrate for the first time the importance of the CaV2.3 subtype of voltage-gated calcium channels in thalamocortical excitability and the oscillations that underlie neurosteroid-induced hypnosis.

4.
Front Pharmacol ; 13: 855779, 2022.
Article in English | MEDLINE | ID: mdl-35370641

ABSTRACT

In an ex vivo rat ocular hypertension (OHT) model, the neurosteroid allopregnanolone (AlloP) exerts neuroprotective effects via enhancement of both GABAA receptors and autophagy. We now examine whether its enantiomer (ent-AlloP), which is largely inactive at GABA receptors, offers similar neuroprotection in ex vivo and in vivo rat OHT models. Ex vivo rat retinal preparations were incubated in a hyperbaric condition (10 and 75 mmHg) for 24 h. An in vivo ocular hypertension (OHT) model was induced by intracameral injection of polystyrene microbeads. We examined pharmacological effects of AlloP, ent-AlloP, picrotoxin (a GABAA receptor antagonist), and 3-MA (an autophagy inhibitor) histologically and biochemically. We found that both AlloP and ent-AlloP have marked neuroprotective effects in the retina, but effects of the unnatural enantiomer are independent of GABAA receptors. Electron microscopic analyses show that pressure elevation significantly increased autophagosomes (APs) in the nerve fiber layer and addition of AlloP also increased APs and degenerative autophagic vacuoles (AVds). ent-AlloP markedly increased APs and AVds compared to AlloP. Examination of LC3B-II and SQSTM1 protein levels using immunoblotting revealed that AlloP increased LC3B-II, and ent-AlloP further enhanced LC3B-II and suppressed SQSTM1, indicating that autophagy is a major mechanism underlying neuroprotection by ent-AlloP. In an rat in vivo OHT model, single intravitreal ent-AlloP injection prevented apoptotic cell death of retinal ganglion cells similar to AlloP. However, even in this model, ent-AlloP was more effective in activating autophagy than AlloP. We conclude that ent-AlloP may be a prototype of potential therapeutic for treatment of glaucoma as an autophagy enhancer without affecting GABA receptors.

5.
Elife ; 112022 01 04.
Article in English | MEDLINE | ID: mdl-34982031

ABSTRACT

Polyunsaturated fatty acids (PUFAs) inhibit pentameric ligand-gated ion channels (pLGICs) but the mechanism of inhibition is not well understood. The PUFA, docosahexaenoic acid (DHA), inhibits agonist responses of the pLGIC, ELIC, more effectively than palmitic acid, similar to the effects observed in the GABAA receptor and nicotinic acetylcholine receptor. Using photo-affinity labeling and coarse-grained molecular dynamics simulations, we identified two fatty acid binding sites in the outer transmembrane domain (TMD) of ELIC. Fatty acid binding to the photolabeled sites is selective for DHA over palmitic acid, and specific for an agonist-bound state. Hexadecyl-methanethiosulfonate modification of one of the two fatty acid binding sites in the outer TMD recapitulates the inhibitory effect of PUFAs in ELIC. The results demonstrate that DHA selectively binds to multiple sites in the outer TMD of ELIC, but that state-dependent binding to a single intrasubunit site mediates DHA inhibition of ELIC.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Ligand-Gated Ion Channels/metabolism , Binding Sites , Molecular Dynamics Simulation , Protein Domains
6.
J Neurosci ; 41(49): 10054-10064, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34725187

ABSTRACT

Inflammatory cells, including macrophages and microglia, synthesize and release the oxysterol 25-hydroxycholesterol (25HC), which has antiviral and immunomodulatory properties. Here, we examined the effects of lipopolysaccharide (LPS), an activator of innate immunity, on 25HC production in microglia, and the effects of LPS and 25HC on CA1 hippocampal synaptic plasticity and learning. In primary microglia, LPS markedly increases the expression of cholesterol 25-hydroxylase (Ch25h), the key enzyme involved in 25HC synthesis, and increases the levels of secreted 25HC. Wild-type microglia produced higher levels of 25HC than Ch25h knock-out (KO) microglia with or without LPS. LPS treatment also disrupts long-term potentiation (LTP) in hippocampal slices via induction of a form of NMDA receptor-dependent metaplasticity. The inhibitory effects of LPS on LTP were mimicked by exogenous 25HC, and were not observed in slices from Ch25h KO mice. In vivo, LPS treatment also disrupts LTP and inhibits one-trial learning in wild-type mice, but not Ch25h KO mice. These results demonstrate that the oxysterol 25HC is a key modulator of synaptic plasticity and memory under proinflammatory stimuli.SIGNIFICANCE STATEMENT Neuroinflammation is thought to contribute to cognitive impairment in multiple neuropsychiatric illnesses. In this study, we found that a proinflammatory stimulus, LPS, disrupts hippocampal LTP via a metaplastic mechanism. The effects of LPS on LTP are mimicked by the oxysterol 25-hydroxycholesterol (25HC), an immune mediator synthesized in brain microglia. Effects of LPS on both synaptic plasticity and one-trial inhibitory avoidance learning are eliminated in mice deficient in Ch25h (cholesterol 25-hydroxylase), the primary enzyme responsible for endogenous 25HC synthesis. Thus, these results indicate that 25HC is a key mediator of the effects of an inflammatory stimulus on hippocampal function and open new potential avenues to overcome the effects of neuroinflammation on brain function.


Subject(s)
Avoidance Learning/physiology , Hippocampus/physiology , Hydroxycholesterols/metabolism , Long-Term Potentiation/physiology , Microglia/metabolism , Animals , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Rats , Rats, Sprague-Dawley
7.
ACS Chem Biol ; 16(8): 1493-1507, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34355883

ABSTRACT

Aliphatic diazirine analogues of cholesterol have been used previously to elaborate the cholesterol proteome and identify cholesterol binding sites on proteins. Cholesterol analogues containing the trifluoromethylphenyl diazirine (TPD) group have not been reported. Both classes of diazirines have been prepared for neurosteroid photolabeling studies and their combined use provided information that was not obtainable with either diazirine class alone. Hence, we prepared cholesterol TPD analogues and used them along with previously reported aliphatic diazirine analogues as photoaffinity labeling reagents to obtain additional information on the cholesterol binding sites of the pentameric Gloeobacter ligand-gated ion channel (GLIC). We first validated the TPD analogues as cholesterol substitutes and compared their actions with those of previously reported aliphatic diazirines in cell culture assays. All the probes bound to the same cholesterol binding site on GLIC but with differences in photolabeling efficiencies and residues identified. Photolabeling of mammalian (HEK) cell membranes demonstrated differences in the pattern of proteins labeled by the two classes of probes. Collectively, these date indicate that cholesterol photoaffinity labeling reagents containing an aliphatic diazirine or TPD group provide complementary information and will both be useful tools in future studies of cholesterol biology.


Subject(s)
Cholesterol/analogs & derivatives , Diazomethane/analogs & derivatives , Ligand-Gated Ion Channels/chemistry , Photoaffinity Labels/chemistry , Alkynes/chemical synthesis , Alkynes/chemistry , Alkynes/metabolism , Binding Sites , Cholesterol/chemical synthesis , Cholesterol/metabolism , Cyanobacteria/chemistry , Diazomethane/chemical synthesis , Diazomethane/metabolism , Fluorescent Dyes/chemistry , Ligand-Gated Ion Channels/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Photoaffinity Labels/chemical synthesis , Photoaffinity Labels/metabolism , Protein Binding
8.
Br J Anaesth ; 127(3): 435-446, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33972091

ABSTRACT

BACKGROUND: We recently showed that a neurosteroid analogue, (3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3ß-OH), induced hypnosis in rats. The aim of the present study was to evaluate the hypnotic and anaesthetic potential of 3ß-OH further using electroencephalography. METHODS: We used behavioural assessment and cortical electroencephalogram (EEG) spectral power analysis to examine hypnotic and anaesthetic effects of 3ß-OH (30 and 60 mg kg-1) administered intraperitoneally or intravenously to young adult male and female rats. RESULTS: We found dose-dependent sex differences in 3ß-OH-induced hypnosis and EEG changes. Both male and female rats responded similarly to i.p. 3ß-OH 30 mg kg-1. However, at the higher dose (60 mg kg-1, i.p.), female rats had two-fold longer duration of spontaneous immobility than male rats (203.4 [61.6] min vs 101.3 [32.1] min), and their EEG was suppressed in the low-frequency range (2-6 Hz), in contrast to male rats. Although a sex-dependent hypnotic effect was not confirmed after 30 mg kg-1 i.v., female rats appeared more sensitive to 3ß-OH with relatively small changes within delta (1-4 Hz) and alpha (8-13 Hz) bands. Finally, 3ß-OH had a rapid onset of action and potent hypnotic/anaesthetic effect after 60 mg kg-1 i.v. in rats of both sexes; however, all female rats and only half of the male rats reached burst suppression, an EEG pattern usually associated with profound inhibition of thalamocortical networks. CONCLUSIONS: Based on its behavioural effects and EEG signature, 3ß-OH is a potent hypnotic in rats, with female rats being more sensitive than male rats.


Subject(s)
Androstanols/pharmacology , Brain Waves/drug effects , Cerebral Cortex/drug effects , Electrocorticography , Immobility Response, Tonic/drug effects , Neurosteroids/pharmacology , Nitriles/pharmacology , Androstanols/administration & dosage , Animals , Cerebral Cortex/physiopathology , Dose-Response Relationship, Drug , Female , Injections, Intraperitoneal , Injections, Intravenous , Male , Neurosteroids/administration & dosage , Nitriles/administration & dosage , Rats, Sprague-Dawley , Sex Factors , Time Factors
9.
Sci Rep ; 11(1): 8927, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903617

ABSTRACT

Mitochondria receive cholesterol from late endosomes and lysosomes (LE/LYSs) or from the plasma membrane for production of oxysterols and steroid hormones. This process depends on the endo-lysosomal sterol transfer protein Niemann Pick C2 (NPC2). Using the intrinsically fluorescent cholesterol analog, cholestatrienol, we directly observe sterol transport to mitochondria in fibroblasts upon treating NPC2 deficient human fibroblasts with NPC2 protein. Soft X-ray tomography reveals the ultrastructure of mitochondria and discloses close contact to endosome-like organelles. Using fluorescence microscopy, we localize endo-lysosomes containing NPC2 relative to mitochondria based on the Euclidian distance transform and use statistical inference to show that about 30% of such LE/LYSs are in contact to mitochondria in human fibroblasts. Using Markov Chain Monte Carlo image simulations, we show that interaction between both organelle types, a defining feature of membrane contact sites (MCSs) can give rise to the observed spatial organelle distribution. We devise a protocol to determine the surface fraction of endo-lysosomes in contact with mitochondria and show that this fraction does not depend on functional NPC1 or NPC2 proteins. Finally, we localize MCSs between LE/LYSs containing NPC2 and mitochondria in time-lapse image sequences and show that they either form transiently or remain stable for tens of seconds. Lasting MCSs between endo-lysosomes containing NPC2 and mitochondria move by slow anomalous sub-diffusion, providing location and time for sterol transport between both organelles. Our quantitative imaging strategy will be of high value for characterizing the dynamics and function of MCSs between various organelles in living cells.


Subject(s)
Fibroblasts/metabolism , Lysosomes/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Sterols/metabolism , Biological Transport, Active , Cell Line , Fibroblasts/cytology , Humans , Male , Microscopy, Fluorescence , Niemann-Pick C1 Protein/metabolism , Vesicular Transport Proteins/metabolism
10.
Br J Anaesth ; 126(1): 245-255, 2021 01.
Article in English | MEDLINE | ID: mdl-32859366

ABSTRACT

BACKGROUND: The mechanisms underlying the role of T-type calcium channels (T-channels) in thalamocortical excitability and oscillations in vivo during neurosteroid-induced hypnosis are largely unknown. METHODS: We used patch-clamp electrophysiological recordings from acute brain slices ex vivo, recordings of local field potentials (LFPs) from the central medial thalamic nucleus in vivo, and wild-type (WT) and Cav3.1 knock-out mice to investigate the molecular mechanisms of hypnosis induced by the neurosteroid analogue (3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3ß-OH). RESULTS: Patch-clamp recordings showed that 3ß-OH inhibited isolated T-currents but had no effect on phasic or tonic γ-aminobutyric acid A currents. Also in acute brain slices, 3ß-OH inhibited the spike firing mode more profoundly in WT than in Cav3.1 knockout mice. Furthermore, 3ß-OH significantly hyperpolarised neurones, reduced the amplitudes of low threshold spikes, and diminished rebound burst firing only in WT mice. We found that 80 mg kg-1 i.p. injections of 3ß-OH induced hypnosis in >60% of WT mice but failed to induce hypnosis in the majority of mutant mice. A subhypnotic dose of 3ß-OH (20 mg kg-1 i.p.) accelerated induction of hypnosis by isoflurane only in WT mice, but had similar effects on the maintenance of isoflurane-induced hypnosis in both WT and Cav3.1 knockout mice. In vivo recordings of LFPs showed that a hypnotic dose of 3ß-OH increased δ, θ, α, and ß oscillations in WT mice in comparison with Cav3.1 knock-out mice. CONCLUSIONS: The Cav3.1 T-channel isoform is critical for diminished thalamocortical excitability and oscillations that underlie neurosteroid-induced hypnosis.


Subject(s)
Androstanols/pharmacology , Brain/drug effects , Brain/metabolism , Calcium Channels, T-Type/metabolism , Hypnotics and Sedatives/pharmacology , Nitriles/pharmacology , Androstanols/metabolism , Animals , Electrophysiological Phenomena , Hypnotics and Sedatives/metabolism , Male , Mice , Mice, Knockout , Models, Animal , Neurosteroids/metabolism , Neurosteroids/pharmacology , Nitriles/metabolism
11.
Cells ; 9(12)2020 12 12.
Article in English | MEDLINE | ID: mdl-33322727

ABSTRACT

Preemptive management of post-incisional pain remains challenging. Here, we examined the role of preemptive use of neuroactive steroids with activity on low-voltage activated T-type Ca2+ channels (T-channels) and γ-aminobutyric acid A (GABAA) receptors in the development and maintenance of post-incisional pain. We use neuroactive steroids with distinct effects on GABAA receptors and/or T-channels: Alphaxalone (combined GABAergic agent and T-channel inhibitor), ECN (T-channel inhibitor), CDNC24 (GABAergic agent), and compared them with an established analgesic, morphine (an opioid agonist without known effect on either T-channels or GABAA receptors). Adult female rats sustained the skin and muscle incision on the plantar surface of the right paw. We injected the agents of choice intrathecally either before or after the development of post-incisional pain. The pain development was monitored by studying mechanical hypersensitivity. Alphaxalone and ECN, but not morphine, are effective in alleviating mechanical hyperalgesia when administered preemptively whereas morphine provides dose-dependent pain relief only when administered once the pain had developed. CDNC24 on the other hand did not offer any analgesic benefit. Neuroactive steroids that inhibit T-currents-Alphaxalone and ECN-unlike morphine, are effective preemptive analgesics that may offer a promising therapeutic approach to the treatment of post-incisional pain, especially mechanical hypersensitivity.


Subject(s)
Analgesics/administration & dosage , Analgesics/therapeutic use , Calcium Channels, T-Type/metabolism , Neurosteroids/therapeutic use , Pain, Postoperative/drug therapy , Pain, Postoperative/metabolism , Analgesics/chemistry , Analgesics/pharmacology , Animals , Disease Models, Animal , Female , Hyperalgesia/complications , Hyperalgesia/drug therapy , Injections, Spinal , Morphine/administration & dosage , Morphine/therapeutic use , Neurosteroids/administration & dosage , Neurosteroids/pharmacology , Pregnanediones/chemistry , Pregnanediones/pharmacology , Pregnanediones/therapeutic use , Rats, Sprague-Dawley
12.
Chem Phys Lipids ; 233: 105004, 2020 11.
Article in English | MEDLINE | ID: mdl-33137329

ABSTRACT

Oxysterols are cholesterol metabolites with multiple functions in controlling cellular homeostasis. In particular, 27-hydroxycholesterol (27-OH-Chol) has been shown to regulate a variety of physiological functions, but little is known about its uptake, intracellular trafficking, and efflux from cells. This is largely due to a lack of suitable analogs of 27-OH-Chol, which mimic this oxysterol closely. Here, we present the intrinsically fluorescent 27-hydroxy-cholestatrienol (27-OH-CTL), which differs from 27-OH-Chol only by having two additional double bonds in the steroid ring system. Based on molecular dynamics (MD) simulations, we show that 27-OH-CTL possesses almost identical membrane properties compared to 27-OH-Chol. By comparative imaging of 27-OH-CTL and of the cholesterol analogue cholestatrienol (CTL) in living cells, we assess the impact of a single hydroxy group on sterol trafficking. We find that human fibroblasts take up more CTL than 27-OH-CTL, but efflux the oxysterol analogue more efficiently. For both sterols, efflux includes shedding of vesicles from the plasma membrane. Intracellular, 27-OH-CTL accumulates primarily in lipid droplets (LDs), while CTL is mostly found in endosomes and lysosomes. Using fluorescence recovery after photobleaching (FRAP), we find for both sterols a rapidly exchanging pool, which moves orders of magnitude faster than sterol containing vesicles and LDs. In summary, by applying a new fluorescent derivative of 27-OH-Chol we demonstrate that human cells can distinguish sterols based on a single hydroxy group in the side chain, resulting in different transport itineraries, dynamics, and efflux kinetics. Both intrinsically fluorescent cholesterol and oxysterol analogues show rapid non-vesicular transport in human fibroblasts.


Subject(s)
Cell Membrane/metabolism , Fluorescent Dyes/metabolism , Hydroxycholesterols/metabolism , Biological Transport , Cell Membrane/chemistry , Cells, Cultured , Fluorescent Dyes/chemistry , Humans , Hydroxycholesterols/chemistry , Molecular Dynamics Simulation
13.
Elife ; 92020 09 21.
Article in English | MEDLINE | ID: mdl-32955433

ABSTRACT

This study examines how site-specific binding to three identified neurosteroid-binding sites in the α1ß3 GABAA receptor (GABAAR) contributes to neurosteroid allosteric modulation. We found that the potentiating neurosteroid, allopregnanolone, but not its inhibitory 3ß-epimer epi-allopregnanolone, binds to the canonical ß3(+)-α1(-) intersubunit site that mediates receptor activation by neurosteroids. In contrast, both allopregnanolone and epi-allopregnanolone bind to intrasubunit sites in the ß3 subunit, promoting receptor desensitization and the α1 subunit promoting effects that vary between neurosteroids. Two neurosteroid analogues with diazirine moieties replacing the 3-hydroxyl (KK148 and KK150) bind to all three sites, but do not potentiate GABAAR currents. KK148 is a desensitizing agent, whereas KK150 is devoid of allosteric activity. These compounds provide potential chemical scaffolds for neurosteroid antagonists. Collectively, these data show that differential occupancy and efficacy at three discrete neurosteroid-binding sites determine whether a neurosteroid has potentiating, inhibitory, or competitive antagonist activity on GABAARs.


Subject(s)
Neurosteroids , Receptors, GABA-A , Animals , Binding Sites , Cells, Cultured , Electrophysiological Phenomena/drug effects , Molecular Docking Simulation , Neurosteroids/antagonists & inhibitors , Neurosteroids/chemistry , Neurosteroids/metabolism , Neurosteroids/pharmacology , Oocytes/metabolism , Pregnanolone/chemistry , Pregnanolone/metabolism , Pregnanolone/pharmacology , Protein Binding , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Xenopus laevis
14.
Br J Anaesth ; 124(5): 603-613, 2020 05.
Article in English | MEDLINE | ID: mdl-32151384

ABSTRACT

BACKGROUND: The most currently used general anaesthetics are potent potentiators of γ-aminobutyric acid A (GABAA) receptors and are invariably neurotoxic during the early stages of brain development in preclinical animal models. As causality between GABAA potentiation and anaesthetic-induced developmental neurotoxicity has not been established, the question remains whether GABAergic activity is crucial for promoting/enhancing neurotoxicity. Using the neurosteroid analogue, (3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol (CDNC24), which potentiates recombinant GABAA receptors, we examined whether this potentiation is the driving force in inducing neurotoxicity during development. METHODS: The neurotoxic potential of CDNC24 was examined vis-à-vis propofol (2,6-diisopropylphenol) and alphaxalone (5α-pregnan-3α-ol-11,20-dione) at the peak of rat synaptogenesis. In addition to the morphological neurotoxicity studies of the subiculum and medial prefrontal cortex (mPFC), we assessed the extra-, pre-, and postsynaptic effects of these agents on GABAergic neurotransmission in acute subicular slices from rat pups. RESULTS: CDNC24, like alphaxalone and propofol, caused dose-dependent hypnosis in vivo, with a higher therapeutic index. CDNC24 and alphaxalone, unlike propofol, did not cause developmental neuroapoptosis in the subiculum and mPFC. Propofol potentiated post- and extrasynaptic GABAA currents as evidenced by increased spontaneous inhibitory postsynaptic current (sIPSC) decay time and prominent tonic currents, respectively. CDNC24 and alphaxalone had a similar postsynaptic effect, but also displayed a strong presynaptic effect as evidenced by decreased frequency of sIPSCs and induced moderate tonic currents. CONCLUSIONS: The lack of neurotoxicity of CDNC24 and alphaxalone may be at least partly related to suppression of presynaptic GABA release in the developing brain.


Subject(s)
Brain/drug effects , Hypnotics and Sedatives/toxicity , Pregnanediones/toxicity , Steroids/toxicity , Animals , Apoptosis/drug effects , Brain/metabolism , Brain/pathology , Dose-Response Relationship, Drug , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Agonists/toxicity , Hippocampus/drug effects , Hippocampus/growth & development , Hippocampus/metabolism , Hippocampus/pathology , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Prefrontal Cortex/drug effects , Prefrontal Cortex/growth & development , Prefrontal Cortex/pathology , Pregnanediones/administration & dosage , Pregnanediones/pharmacology , Propofol/administration & dosage , Propofol/pharmacology , Propofol/toxicity , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Steroids/administration & dosage , Steroids/pharmacology , Synapses/drug effects , Synapses/physiology
15.
Biochim Biophys Acta Biomembr ; 1862(2): 183063, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31521631

ABSTRACT

Side-chain oxidized cholesterol derivatives, like 25-hydroxycholesterol (25-OH-Chol) are important regulators of cellular cholesterol homeostasis. How transport of oxysterols through the endo-lysosomal pathway contributes to their biological function is not clear. The Niemann-Pick C2 protein (NPC2) is a small lysosomal sterol transfer protein required for export of cholesterol from late endosomes and lysosomes (LE/LYSs). Here, we show that 25-hydroxy-cholestatrienol, (25-OH-CTL), an intrinsically fluorescent analogue of 25-OH-Chol, becomes trapped in LE/LYSs of NPC2-deficient fibroblasts, but can efflux from the cells even in the absence of NPC2 upon removal of the sterol source. Fluorescence recovery after photobleaching (FRAP) of 25-OH-CTL in endo-lysosomes was rapid and extensive and only partially dependent on NPC2 function. Using quenching of NPC2's intrinsic fluorescence, we show that 25-OH-Chol and 25-OH-CTL can bind to NPC2 though with lower affinity compared to cholesterol and its fluorescent analogues, cholestatrienol (CTL) and dehydroergosterol (DHE). This is confirmed by calculations of binding energies which additionally show that 25-OH-CTL can bind in two orientations to NPC2, in stark contrast to cholesterol and its analogues. We conclude that NPC2's affinity for all sterols is energetically favored over their self-aggregation in the lysosomal lumen. Lysosomal export of 25-OH-Chol is not strictly dependent on the NPC2 protein.


Subject(s)
Hydroxycholesterols/metabolism , Vesicular Transport Proteins/metabolism , Biological Transport , Cells, Cultured , Endosomes/metabolism , Fibroblasts/metabolism , Fluorescence Recovery After Photobleaching , Humans , Lysosomes/metabolism , Niemann-Pick Disease, Type C , Protein Binding , Sterols/metabolism , Vesicular Transport Proteins/deficiency
16.
Br J Pharmacol ; 177(8): 1735-1753, 2020 04.
Article in English | MEDLINE | ID: mdl-31732978

ABSTRACT

BACKGROUND AND PURPOSE: Neuroactive steroid (3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile (3ß-OH) is a novel hypnotic and voltage-dependent blocker of T-type calcium channels. Here, we examine its potential analgesic effects and adjuvant anaesthetic properties using a post-surgical pain model in rodents. EXPERIMENTAL APPROACH: Analgesic properties of 3ß-OH were investigated in thermal and mechanical nociceptive tests in sham or surgically incised rats and mice, with drug injected either systemically (intraperitoneal) or locally via intrathecal or intraplantar routes. Hypnotic properties of 3ß-OH and its use as an adjuvant anaesthetic in combination with isoflurane were investigated using behavioural experiments and in vivo EEG recordings in adolescent rats. KEY RESULTS: A combination of 1% isoflurane with 3ß-OH (60 mg·kg-1 , i.p.) induced suppression of cortical EEG and stronger thermal and mechanical anti-hyperalgesia during 3 days post-surgery, when compared to isoflurane alone and isoflurane with morphine. 3ß-OH exerted prominent enantioselective thermal and mechanical antinociception in healthy rats and reduced T-channel-dependent excitability of primary sensory neurons. Intrathecal injection of 3ß-OH alleviated mechanical hyperalgesia, while repeated intraplantar application alleviated both thermal and mechanical hyperalgesia in the rats after incision. Using mouse genetics, we found that CaV 3.2 T-calcium channels are important for anti-hyperalgesic effect of 3ß-OH and are contributing to its hypnotic effect. CONCLUSION AND IMPLICATIONS: Our study identifies 3ß-OH as a novel analgesic for surgical procedures. 3ß-OH can be used to reduce T-channel-dependent excitability of peripheral sensory neurons as an adjuvant for induction and maintenance of general anaesthesia while improving analgesia and lowering the amount of volatile anaesthetic needed for surgery.


Subject(s)
Analgesia , Calcium Channels, T-Type , Neurosteroids , Animals , Hyperalgesia/drug therapy , Hypnotics and Sedatives , Mice , Pain, Postoperative/drug therapy , Rats , Rats, Sprague-Dawley , Rodentia
17.
J Steroid Biochem Mol Biol ; 192: 105383, 2019 09.
Article in English | MEDLINE | ID: mdl-31150831

ABSTRACT

Neurosteroids positively modulate GABA-A receptor (GABAAR) channel activity by binding to a transmembrane domain intersubunit site. Understanding the interactions in this site that determine neurosteroid binding and its effect is essential for the design of neurosteroid-based therapeutics. Using photo-affinity labeling and an ELIC-α1GABAAR chimera, we investigated the impact of mutations (Q242L, Q242W and W246L) within the intersubunit site on neurosteroid binding. These mutations, which abolish the thermal stabilizing effect of allopregnanolone on the chimera, reduce neither photolabeling within the intersubunit site nor competitive prevention of labeling by allopregnanolone. Instead, these mutations change the orientation of neurosteroid photolabeling. Molecular docking of allopregnanolone in WT and Q242W receptors confirms that the mutation favors re-orientation of allopregnanolone within the binding pocket. Collectively, the data indicate that mutations at Gln242 or Trp246 that eliminate neurosteroid effects do not eliminate neurosteroid binding within the intersubunit site, but significantly alter the preferred orientation of the neurosteroid within the site. The interactions formed by Gln242 and Trp246 within this pocket play a vital role in determining the orientation of the neurosteroid that may be necessary for its functional effect.


Subject(s)
Neurosteroids/chemistry , Neurosteroids/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Glutamine/chemistry , Glutamine/genetics , Glutamine/metabolism , Humans , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Protein Domains , Receptors, GABA-A/genetics , Sequence Homology , Tryptophan/chemistry , Tryptophan/genetics , Tryptophan/metabolism
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1269-1279, 2019 10.
Article in English | MEDLINE | ID: mdl-31176038

ABSTRACT

Voltage-dependent anion channel-1 (VDAC1) is a mitochondrial porin that is implicated in cellular metabolism and apoptosis, and modulated by numerous small molecules including lipids. VDAC1 binds sterols, including cholesterol and neurosteroids such as allopregnanolone. Biochemical and computational studies suggest that VDAC1 binds multiple cholesterol molecules, but photolabeling studies have identified only a single cholesterol and neurosteroid binding site at E73. To identify all the binding sites of neurosteroids in VDAC1, we apply photo-affinity labeling using two sterol-based photolabeling reagents with complementary photochemistry: 5α-6-AziP which contains an aliphatic diazirine, and KK200 which contains a trifluoromethyl-phenyldiazirine (TPD) group. 5α-6-AziP and KK200 photolabel multiple residues within an E73 pocket confirming the presence of this site and mapping sterol orientation within this pocket. In addition, KK200 photolabels four other sites consistent with the finding that VDAC1 co-purifies with five cholesterol molecules. Both allopregnanolone and cholesterol competitively prevent photolabeling at E73 and three other sites indicating that these are common sterol binding sites shared by both neurosteroids and cholesterol. Binding at the functionally important residue E73 suggests a possible role for sterols in regulating VDAC1 signaling and interaction with partner proteins.


Subject(s)
Cholesterol/metabolism , Neurosteroids/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Amino Acid Sequence , Animals , Binding Sites , Mice , Models, Molecular , Protein Binding , Voltage-Dependent Anion Channel 1/chemistry
19.
Br J Anaesth ; 122(5): 643-651, 2019 May.
Article in English | MEDLINE | ID: mdl-30916017

ABSTRACT

BACKGROUND: Hypnotics and general anaesthetics impair memory by altering hippocampal synaptic plasticity. We recently reported on a neurosteroid analogue with potent hypnotic activity [(3ß,5ß,17ß)-3-hydroxyandrostane-17-carbonitrile; 3ß-OH], which does not cause developmental neurotoxicity in rat pups. Here, we investigated the effects of 3ß-OH on neuronal excitability in the subiculum, the major output structure of the hippocampal formation, and synaptic plasticity at two key hippocampal synapses in juvenile rats. METHODS: Biophysical properties of isolated T-type calcium currents (T-currents) in the rat subiculum were investigated using acute slice preparations. Subicular T-type calcium channel (T-channel) subtype mRNA expression was compared using qRT-PCR. Using electrophysiological recordings, we examined the effects of 3ß-OH and an endogenous neuroactive steroid, allopregnanolone (Allo), on T-currents and burst firing properties of subicular neurones, and on the long-term potentiation (LTP) in CA3-CA1 and CA1-subiculum pathways. RESULTS: Biophysical and molecular studies confirmed that CaV3.1 channels represent the dominant T-channel isoform in the subiculum of juvenile rats. 3ß-OH and Allo inhibited rebound burst firing by decreasing the amplitude of T-currents in a voltage-dependent manner with similar potency, with 30-80% inhibition. Both neurosteroids suppressed LTP at the CA1-subiculum, but not at the CA3-CA1 Schaffer collateral synapse. CONCLUSIONS: Neurosteroid effects on T-channels modulate hippocampal output and provide possible molecular mechanisms for the amnestic action of the novel hypnotic 3ß-OH. Effects on T-channels in the subiculum provide a novel target for amnestic effects of hypnotics.


Subject(s)
Androstanols/pharmacology , Calcium Channels, T-Type/drug effects , Hippocampus/drug effects , Hypnotics and Sedatives/pharmacology , Long-Term Potentiation/drug effects , Neuronal Plasticity/drug effects , Nitriles/pharmacology , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/biosynthesis , Calcium Channels, T-Type/genetics , Female , Gene Expression Regulation/drug effects , Hippocampus/physiology , Long-Term Potentiation/physiology , Male , RNA, Messenger/genetics , Rats, Sprague-Dawley
20.
J Lipid Res ; 60(3): 707-716, 2019 03.
Article in English | MEDLINE | ID: mdl-30617147

ABSTRACT

Cholesterol is an essential structural component of cellular membranes and precursor molecule for oxysterol, bile acid, and hormone synthesis. The study of intracellular cholesterol trafficking pathways has been limited in part due to a lack of suitable cholesterol analogues. Herein, we developed three novel diazirine alkyne cholesterol probes: LKM38, KK174, and KK175. We evaluated these probes as well as a previously described diazirine alkyne cholesterol analogue, trans-sterol, for their fidelity as cholesterol mimics and for study of cholesterol trafficking. LKM38 emerged as a promising cholesterol mimic because it both sustained the growth of cholesterol-auxotrophic cells and appropriately regulated key cholesterol homeostatic pathways. When presented as an ester in lipoprotein particles, LKM38 initially localized to the lysosome and subsequently trafficked to the plasma membrane and endoplasmic reticulum. LKM38 bound to diverse, established cholesterol binding proteins. Through a detailed characterization of the cellular behavior of a panel of diazirine alkyne probes using cell biological, biochemical trafficking assays and immunofluorescence approaches, we conclude that LKM38 can serve as a powerful tool for the study of cholesterol protein interactions and trafficking.


Subject(s)
Alkynes/chemistry , Cholesterol/metabolism , Diazomethane/chemical synthesis , Diazomethane/metabolism , Intracellular Space/metabolism , Molecular Probes/chemical synthesis , Molecular Probes/metabolism , Biological Transport , Cell Line, Tumor , Chemistry Techniques, Synthetic , Diazomethane/chemistry , Homeostasis , Humans , Lipoproteins/metabolism , Lysosomes/metabolism , Molecular Probes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...