Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Ann Neurol ; 95(6): 1149-1161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558306

ABSTRACT

OBJECTIVE: Androgens have been hypothesized to be involved in the pathophysiology of cluster headache due to the male predominance, but whether androgens are altered in patients with cluster headache remains unclear. METHODS: We performed a prospective, case-controlled study in adult males with cluster headache. Sera were measured for hormones including testosterone, luteinizing hormone (LH), and sex hormone-binding globulin in 60 participants with episodic cluster headache (during a bout and in remission), 60 participants with chronic cluster headache, and 60 age- and sex-matched healthy controls. Free testosterone (fT) was calculated according to the Vermeulen equation. Shared genetic risk variants were assessed between cluster headache and testosterone concentrations. RESULTS: The mean fT/LH ratio was reduced by 35% (95% confidence interval [CI]: 21%-47%, p < 0.0001) in patients with chronic cluster headache and by 24% (95% CI: 9%-37%, p = 0.004) in patients with episodic cluster headache compared to controls after adjusting for age, sleep duration, and use of acute medication. Androgen concentrations did not differ between bouts and remissions. Furthermore, a shared genetic risk allele, rs112572874 (located in the intron of the microtubule associated protein tau (MAPT) gene on chromosome 17), between fT and cluster headache was identified. INTERPRETATION: Our results demonstrate that the male endocrine system is altered in patients with cluster headache to a state of compensated hypogonadism, and this is not an epiphenomenon associated with sleep or the use of acute medication. Together with the identified shared genetic risk allele, this may suggest a pathophysiological link between cluster headache and fT. ANN NEUROL 2024;95:1149-1161.


Subject(s)
Cluster Headache , Hypogonadism , Luteinizing Hormone , Testosterone , Humans , Male , Cluster Headache/genetics , Cluster Headache/blood , Case-Control Studies , Adult , Hypogonadism/genetics , Hypogonadism/blood , Prospective Studies , Middle Aged , Testosterone/blood , Luteinizing Hormone/blood , Sex Hormone-Binding Globulin/genetics
2.
Environ Int ; 181: 108299, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37951015

ABSTRACT

Paracetamol/acetaminophen (N-acetyl-p-aminophenol, APAP) is a top selling analgesic used in more than 600 prescription and non-prescription pharmaceuticals. To study efficiently some of the potential undesirable effects associated with increasing APAP consumption (e.g., developmental disorders, drug-induced liver injury), there is a need to improve current APAP biomonitoring methods that are limited by APAP short half-life. Here, we demonstrate using high-resolution mass spectrometry (HRMS) in several human studies that APAP thiomethyl metabolite conjugates (S-methyl-3-thioacetaminophen sulfate and S-methyl-3-thioacetaminophen sulphoxide sulfate) are stable biomarkers with delayed excretion rates compared to conventional APAP metabolites, that could provide a more reliable history of APAP ingestion in epidemiological studies. We also show that these biomarkers could serve as relevant clinical markers to diagnose APAP acute intoxication in overdosed patients, when free APAP have nearly disappeared from blood. Using in vitro liver models (HepaRG cells and primary human hepatocytes), we then confirm that these thiomethyl metabolites are directly linked to the toxic N-acetyl-p-benzoquinone imine (NAPQI) elimination, and produced via an overlooked pathway called the thiomethyl shunt pathway. Further studies will be needed to determine whether the production of the reactive hepatotoxic NAPQI metabolites is currently underestimated in human. Nevertheless, these biomarkers could already serve to improve APAP human biomonitoring, and investigate, for instance, inter-individual variability in NAPQI production to study underlying causes involved in APAP-induced hepatotoxicity. Overall, our findings demonstrate the potential of exposomics-based HRMS approach to advance towards a better precision for human biomonitoring.


Subject(s)
Acetaminophen , Biological Monitoring , Humans , Acetaminophen/toxicity , Acetaminophen/chemistry , Acetaminophen/metabolism , Mass Spectrometry , Liver , Biomarkers/metabolism , Sulfates/metabolism
3.
Environ Health Perspect ; 131(11): 117003, 2023 11.
Article in English | MEDLINE | ID: mdl-37909725

ABSTRACT

BACKGROUND: Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE: In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS: A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS: A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100µM. None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (Ntotal=144). DISCUSSION: Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.


Subject(s)
Environmental Pollutants , Migraine Disorders , Transient Receptor Potential Channels , Mice , Animals , TRPA1 Cation Channel/physiology , Calcitonin Gene-Related Peptide/metabolism , Calcium/metabolism , Xenobiotics , Transient Receptor Potential Channels/metabolism , Migraine Disorders/metabolism , Pain , Environmental Pollutants/toxicity
4.
Front Endocrinol (Lausanne) ; 13: 1000872, 2022.
Article in English | MEDLINE | ID: mdl-36339411

ABSTRACT

Metformin is the first-line oral treatment for type 2 diabetes mellitus and is prescribed to more than 150 million people worldwide. Metformin's effect as a glucose-lowering drug is well documented but the precise mechanism of action is unknown. A recent finding of an association between paternal metformin treatment and increased numbers of genital birth defects in sons and a tendency towards a skewed secondary sex ratio with less male offspring prompted us to focus on other evidence of reproductive side effects of this drug. Metformin in humans is documented to reduce the circulating level of testosterone in both men and women. In experimental animal models, metformin exposure in utero induced sex-specific reproductive changes in adult rat male offspring with reduced fertility manifested as a 30% decrease in litter size and metformin exposure to fish, induced intersex documented in testicular tissue. Metformin is excreted unchanged into urine and feces and is present in wastewater and even in the effluent of wastewater treatment plants from where it spreads to rivers, lakes, and drinking water. It is documented to be present in numerous freshwater samples throughout the world - and even in drinking water. We here present the hypothesis that metformin needs to be considered a potential reproductive toxicant for humans, and probably also for wildlife. There is an urgent need for studies exploring the association between metformin exposure and reproductive outcomes in humans, experimental animals, and aquatic wildlife.


Subject(s)
Diabetes Mellitus, Type 2 , Drinking Water , Metformin , Humans , Male , Female , Rats , Animals , Metformin/adverse effects , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Reproduction , Fertility
5.
EBioMedicine ; 83: 104236, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36030647

ABSTRACT

BACKGROUND: Perfluoroalkyl substances PFOS and PFOA are persistent and bioaccumulative exogenous chemicals in the human body with a range of suspected negative health effects. It is hypothesised that exposure during prenatal and early postnatal life might have particularly detrimental effects on intrauterine and childhood growth. In a Danish longitudinal mother-child cohort we investigate effect of PFOS and PFOA in pregnancy and infancy on intrauterine and childhood growth and anthropometry. METHODS: COPSAC2010 is an ongoing population based mother-child cohort of 738 pregnant women and their children followed from 24 week gestation with longitudinal deep clinical phenotyping until age 10 years. In this observational cohort sub study plasma PFOS and PFOA concentrations were semi-quantified by untargeted metabolomics in the mothers at week 24 and 1 week postpartum and in the children at ages 6 and 18 months and calibrated using a targeted pipeline. We examined associations to intrauterine and childhood growth and anthropometry, including interactions with child sex. Untargeted and targeted blood metabolomics profiles were integrated to investigate underlying mechanisms. FINDINGS: Pregnancy plasma PFOA concentrations were associated with lower birth size -0.19 [-0.33; -0.05] BMI z-score per 1-ng/mL and increased childhood height (z-scored) at age 6: 0.18 [0.05; 0.31], but there was no association between childs' own infancy plasma PFOA concentration and height. Pregnancy plasma PFOS concentrations were also associated with lower birth BMI (-0.04 [-0.08; -0.01]), but in childhood pregnancy plasma PFOS concentration interacted with child sex on BMI and fat percentage at 6 years with negative associations in girls and positive in boys. The effect of maternal plasma PFOS concentration on lower girl BMI was borderline mediated through increasing child plasma lactosyl-ceramide levels (p-mediation=0.08). Similarly the effect of maternal plasma PFOS concentration on higher boy fat percentage was borderline mediated through increasing child plasma lactosyl-ceramide levels (p-mediation=0.07). Infancy concentrations of plasma PFOS associated with lower height in childhood, -0.06 z-score at age 6 [-0.19; -0.03]. INTERPRETATION: Higher PFOS and PFOA plasma concentrations during pregnancy had detrimental effects on fetal growth. The effects on childhood growth were not similar as PFOA increased child height, opposite of PFOS in multipollutant models suggesting a differing fetal programming effect. Sex specific growth effects were borderline mediated through an altered lactosyl-ceramide metabolism, proposing a possible mechanism of PFOS that has long-lasting health consequences in this observational study. FUNDING: All funding received by COPSAC are listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-A1694); The Novo Nordic Foundation (Grant nos NNF20OC0061029, NNF170C0025014, NNF180C0031764) The Ministry of Health (Grant no 903516); Danish Council for Strategic Research (Grant no 0603-00280B) and The Capital Region Research Foundation have provided core support to the COPSAC research center. Effort from JALS is supported by R01HL123915, R01HL141826, and R01HL155742 from NIH/NHLBI. CEW was supported by the Swedish Heart Lung Foundation (HLF 20180290, HLF 20200693). BC has received funding for this project from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 946228). The funding agencies did not have any role in design and conduct of the study; collection, management, and interpretation of the data; or preparation, review, or approval of the manuscript.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Prenatal Exposure Delayed Effects , Anthropometry , Birth Cohort , Caprylates , Ceramides , Child , Environmental Pollutants/adverse effects , Female , Humans , Infant , Male , Maternal Exposure/adverse effects , Pregnancy
6.
J Vis Exp ; (183)2022 05 16.
Article in English | MEDLINE | ID: mdl-35635478

ABSTRACT

Calcitonin gene-related peptide (CGRP) was first discovered in the 1980s as a splice variant from the calcitonin gene. Since its discovery, its role in migraine pathophysiology has been well established, first by its potent vasodilator properties and subsequently by its presence and function as a neurotransmitter in the sensory trigeminovascular system. The migraine-provoking ability of CGRP gave support to the pharma industry to develop monoclonal antibodies and antagonists inhibiting the effect of CGRP. A new treatment paradigm has proven effective in the prophylactic treatment of migraine. One of the useful tools to further understand migraine mechanisms is the ex vivo model of CGRP release from the trigeminovascular system. It is a relatively simple method that can be used with various pharmacological tools to achieve know-how to further develop new effective migraine treatments. The present protocol describes a CGRP release model and the technique to quantify the effect of pharmacological agents on the amount of CGRP released from the trigeminovascular system in rodents. A procedure describing the experimental approach from euthanasia to the measurement of protein levels is provided. The essential isolation of the trigeminal ganglion and the trigeminal nucleus caudalis from both mice and rats and the preparation of rat dura mater are described in detail. Furthermore, representative results from both species (rats and mice) are presented. The technique is a key tool to investigate the molecular mechanisms involved in migraine pathophysiology by using various pharmacological compounds and genetically modified animals.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Animals , Calcitonin/metabolism , Calcitonin Gene-Related Peptide/metabolism , Mice , Migraine Disorders/drug therapy , Rats , Rodentia/metabolism , Trigeminal Ganglion/metabolism
8.
Brain ; 145(7): 2450-2460, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35136961

ABSTRACT

Calcitonin gene-related peptide (CGRP)-antagonizing drugs represent a major advance in migraine treatment. However, up to 50% of patients do not benefit from monoclonal antibodies against CGRP or its receptor. Here, we test the hypothesis that a closely related peptide, pituitary adenylate cyclase-activating peptide (PACAP-38), works independently of CGRP and thus might represent a new, alternative drug target. To understand differences in CGRP- and PACAP-mediated migraine pain, we used mouse models of provoked migraine-like pain based on multiple stimulations and subsequent measurement of tactile sensitivity response with von Frey filaments. Genetically modified mice lacking either functional CGRP receptors (Ramp1 knockout) or TRPA1 channels (Trpa1 knockout) were used together with CGRP-targeting antibodies and chemical inhibitors in wild-type mice (ntotal = 299). Ex vivo myograph studies were used to measure dilatory responses to CGRP and PACAP-38 in mouse carotid arteries. PACAP-38 provoked significant hypersensitivity and dilated the carotid arteries independently of CGRP. In contrast, glyceryl trinitrate-induced hypersensitivity is dependent on CGRP. Contrary to previous results with the migraine-inducing substances glyceryl trinitrate, cilostazol and levcromakalim, PACAP-38-induced hypersensitivity worked only partially through inhibition of ATP-sensitive potassium channels. Using multiple migraine-relevant models, these findings establish the PACAP-38 pathway as distinct from other migraine provoking pathways such as CGRP and glyceryl trinitrate. PACAP antagonism may therefore be a novel therapeutic target of particular interest in patients unresponsive to CGRP-antagonizing drugs.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Animals , Calcitonin Gene-Related Peptide/metabolism , Disease Models, Animal , Mice , Migraine Disorders/chemically induced , Nitroglycerin/adverse effects , Pain/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
10.
Cephalalgia ; 42(2): 93-107, 2022 02.
Article in English | MEDLINE | ID: mdl-34816764

ABSTRACT

BACKGROUND: Opening of KATP channels by systemic levcromakalim treatment triggers attacks in migraine patients and hypersensitivity to von Frey stimulation in a mouse model. Blocking of these channels is effective in several preclinical migraine models. It is unknown in what tissue and cell type KATP-induced migraine attacks are initiated and which KATP channel subtype is targeted. METHODS: In mouse models, we administered levcromakalim intracerebroventricularly, intraperitoneally and intraplantarily and compared the nociceptive responses by von Frey and hotplate tests. Mice with a conditional loss-of-function mutation in the smooth muscle KATP channel subunit Kir6.1 were given levcromakalim and GTN and examined with von Frey filaments. Arteries were tested for their ability to dilate ex vivo. mRNA expression, western blotting and immunohistochemical stainings were made to identify relevant target tissue for migraine induced by KATP channel opening. RESULTS: Systemic administration of levcromakalim induced hypersensitivity but central and local administration provided antinociception respectively no effect. The Kir6.1 smooth muscle knockout mouse was protected from both GTN and levcromakalim induced hypersensitivity, and their arteries had impaired dilatory response to the latter. mRNA and protein expression studies showed that trigeminal ganglia did not have significant KATP channel expression of any subtype, whereas brain arteries and dura mater primarily expressed the Kir6.1 + SUR2B subtype. CONCLUSION: Hypersensitivity provoked by GTN and levcromakalim in mice is dependent on functional smooth muscle KATP channels of extracerebral origin. These results suggest a vascular contribution to hypersensitivity induced by migraine triggers.


Subject(s)
KATP Channels , Migraine Disorders , Adenosine Triphosphate , Animals , Cromakalim/adverse effects , Disease Models, Animal , Humans , KATP Channels/genetics , KATP Channels/metabolism , Mice , Mice, Knockout , Muscle, Smooth/metabolism , RNA, Messenger
11.
Nat Rev Endocrinol ; 17(12): 757-766, 2021 12.
Article in English | MEDLINE | ID: mdl-34556849

ABSTRACT

Paracetamol (N-acetyl-p-aminophenol (APAP), otherwise known as acetaminophen) is the active ingredient in more than 600 medications used to relieve mild to moderate pain and reduce fever. APAP is widely used by pregnant women as governmental agencies, including the FDA and EMA, have long considered APAP appropriate for use during pregnancy when used as directed. However, increasing experimental and epidemiological research suggests that prenatal exposure to APAP might alter fetal development, which could increase the risks of some neurodevelopmental, reproductive and urogenital disorders. Here we summarize this evidence and call for precautionary action through a focused research effort and by increasing awareness among health professionals and pregnant women. APAP is an important medication and alternatives for treatment of high fever and severe pain are limited. We recommend that pregnant women should be cautioned at the beginning of pregnancy to: forego APAP unless its use is medically indicated; consult with a physician or pharmacist if they are uncertain whether use is indicated and before using on a long-term basis; and minimize exposure by using the lowest effective dose for the shortest possible time. We suggest specific actions to implement these recommendations. This Consensus Statement reflects our concerns and is currently supported by 91 scientists, clinicians and public health professionals from across the globe.


Subject(s)
Acetaminophen , Fetal Development , Acetaminophen/adverse effects , Female , Humans , Pregnancy
12.
Cephalalgia ; 41(14): 1413-1426, 2021 12.
Article in English | MEDLINE | ID: mdl-34407650

ABSTRACT

BACKGROUND: Knowledge of exact signalling events during migraine attacks is lacking. Various substances are known to trigger migraine attacks in patients and calcitonin gene-related peptide antagonising drugs are effective against migraine pain. Here, we investigated the signalling pathways involved in three different mouse models of provoked migraine and relate them to calcitonin gene-related peptide and other migraine-relevant targets. METHODS: In vivo mouse models of glyceryl trinitrate-, cilostazol- and levcromakalim-induced migraine were applied utilising tactile sensitivity to von Frey filaments as measuring readout. Signalling pathways involved in the three models were dissected by use of specific knockout mice and chemical inhibitors. In vivo results were supported by ex vivo wire myograph experiments measuring arterial dilatory responses and ex vivo calcitonin gene-related peptide release from trigeminal ganglion and trigeminal nucleus caudalis from mice. RESULTS: Glyceryl trinitrate-induced hypersensitivity was dependent on both prostaglandins and transient receptor potential cation channel, subfamily A, member 1, whereas cilostazol- and levcromakalim-induced hypersensitivity were independent of both. All three migraine triggers activated calcitonin gene-related peptide signalling, as both receptor antagonism and antibody neutralisation of calcitonin gene-related peptide were effective inhibitors of hypersensitivity in all three models. Stimulation of trigeminal ganglia and brain stem tissue samples with cilostazol and levcromakalim did not result in release of calcitonin gene-related peptide, and vasodilation following levcromakalim stimulation was independent of CGRP receptor antagonism. CONCLUSION: The mouse models of glyceryl trinitrate-, cilostazol- and levcromakalim- induced migraine all involve calcitonin gene-related peptide signalling in a complex interplay between different cell/tissue types. These models are useful in the study of migraine mechanisms.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Animals , Cilostazol/toxicity , Cromakalim , Humans , Mice , Mice, Knockout , Trigeminal Ganglion
13.
Environ Int ; 149: 106388, 2021 04.
Article in English | MEDLINE | ID: mdl-33524668

ABSTRACT

The analgesic paracetamol/acetaminophen (N-acetyl-4-aminophenol, APAP) is commonly used to relieve pain, fever and malaise. While sales have increased worldwide, a growing body of experimental and epidemiological evidence has suggested APAP as a possible risk factor for various health disorders in humans. To perform internal exposure-based risk assessment, the use of accurate and optimized biomonitoring methods is critical. However, retrospectively assessing pharmaceutical use of APAP in humans is challenging because of its short half-life. The objective of this study was to address the key issue of potential underestimation of APAP use using current standard analytical methods based on urinary analyses of free APAP and its phase II conjugates. The question we address is whether investigating additional metabolites than direct phase II conjugates could improve the monitoring of APAP. Using non-targeted analyses based on high-resolution mass spectrometry, we identified, in a controlled longitudinal exposure study with male volunteers, overlooked APAP metabolites with delayed formation and excretion rates. We postulate that these metabolites are formed via the thiomethyl shunt after the enterohepatic circulation as already observed in rodents. Importantly, these conjugated thiomethyl metabolites were (i) of comparable diagnostic sensitivity as the free APAP and its phase II conjugates detected by current methods; (ii) had delayed peak levels in blood and urine compared to other APAP metabolites and therefore potentially extend the window of exposure assessment; and (iii) provide relevant information regarding metabolic pathways of interest from a toxicological point of view. Including these metabolites in future APAP biomonitoring methods therefore provides an option to decrease potential underestimation of APAP use. Moreover, our data challenge the notion that the standard methods in biomonitoring based exclusively on the parent compound and its phase II metabolites are adequate for human biomonitoring of a non-persistent chemical such as APAP.


Subject(s)
Acetaminophen , Biological Monitoring , Humans , Male , Mass Spectrometry , Retrospective Studies
14.
Cephalalgia ; 41(3): 329-339, 2021 03.
Article in English | MEDLINE | ID: mdl-33059476

ABSTRACT

INTRODUCTION: Despite recent advances in migraine treatment there is a need for therapies with higher clinical efficacy and/or fewer side effects. Triptans (5-HT1B/1D/1F agonists) are essential in the present treatment regime and gepants (CGRP-receptor antagonists) are recognized as effective in acute migraine treatment. Triptans and gepants have different mechanisms of action and here we tested the hypothesis that a combination of these drugs (sumatriptan and olcegepant) would result in an additive effect. METHODS: Using the validated glyceryl trinitrate mouse model of migraine, we initially tested dose-response relationships of sumatriptan (0.1, 0.3, and 0.6 mg/kg IP) and olcegepant (0.25, 0.50, and 1.0 mg/kg IP) to find suitable high and low doses. Subsequently, we performed a combination study of the two drugs with a low and a high dose. All experiments were vehicle (placebo) controlled and blinded. RESULTS: Sumatriptan significantly reduced glyceryl trinitrate-induced allodynia (F(4,54) = 13.51, p < 0.0001) at all doses. Olcegepant also reduced glyceryl trinitrate-induced allodynia (F(4,53) = 16.11, p < 0.0001) with the two higher doses being significantly effective. Combining 0.50 mg/kg olcegepant with 0.1 or 0.6 mg/kg sumatriptan did not have any improved effect compared to either drug alone (p > 0.50 on all days) in our mouse model. CONCLUSION: Combining olcegepant and sumatriptan did not have an additive effect compared to single-drug treatment in this study. Triptan-gepant combinations will therefore most likely not improve migraine treatment. Nevertheless, further studies are necessary, and combinations should also be examined in patients with migraine.


Subject(s)
Migraine Disorders , Animals , Calcitonin Gene-Related Peptide Receptor Antagonists , Disease Models, Animal , Hyperalgesia , Mice , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Nitroglycerin , Pharmaceutical Preparations , Piperazines , Quinazolines , Sumatriptan , Tryptamines
15.
Viruses ; 12(12)2020 12 10.
Article in English | MEDLINE | ID: mdl-33322070

ABSTRACT

Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE.


Subject(s)
Computational Biology , Databases, Genetic , Metagenomics/methods , Viruses/genetics , Computational Biology/methods , Genetic Variation , Genome, Viral , Host-Pathogen Interactions , Humans , User-Computer Interface , Viral Proteins/genetics , Viral Proteins/metabolism , Viruses/metabolism , Web Browser
16.
Brain ; 143(10): 2945-2956, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32968778

ABSTRACT

Migraine is the most common neurological disorder worldwide and it has been shown to have complex polygenic origins with a heritability of estimated 40-70%. Both common and rare genetic variants are believed to underlie the pathophysiology of the prevalent types of migraine, migraine with typical aura and migraine without aura. However, only common variants have been identified so far. Here we identify for the first time a gene module with rare mutations through a systems genetics approach integrating RNA sequencing data from brain and vascular tissues likely to be involved in migraine pathology in combination with whole genome sequencing of 117 migraine families. We found a gene module in the visual cortex, based on single nuclei RNA sequencing data, that had increased rare mutations in the migraine families and replicated this in a second independent cohort of 1930 patients. This module was mainly expressed by interneurons, pyramidal CA1, and pyramidal SS cells, and pathway analysis showed association with hormonal signalling (thyrotropin-releasing hormone receptor and oxytocin receptor signalling pathways), Alzheimer's disease pathway, serotonin receptor pathway and general heterotrimeric G-protein signalling pathways. Our results demonstrate that rare functional gene variants are strongly implicated in the pathophysiology of migraine. Furthermore, we anticipate that the results can be used to explain the critical mechanisms behind migraine and potentially improving the treatment regime for migraine patients.


Subject(s)
Databases, Genetic , Family , Gene Regulatory Networks/physiology , Genetic Variation/physiology , Migraine Disorders/genetics , Protein Interaction Maps/physiology , Cohort Studies , Databases, Genetic/trends , Humans , Migraine Disorders/diagnosis , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Trigeminal Ganglion/pathology , Visual Cortex/pathology
17.
Cephalalgia ; 40(7): 650-664, 2020 06.
Article in English | MEDLINE | ID: mdl-32418458

ABSTRACT

BACKGROUND: Recently, the adenosine triphosphate (ATP) sensitive potassium channel opener levcromakalim was shown to induce migraine attacks with a far higher incidence than any previous provoking agent such as calcitonin gene-related peptide. Here, we show efficacy of ATP sensitive potassium channel inhibitors in two validated rodent models of migraine. METHODS: In female spontaneous trigeminal allodynic rats, the sensitivity of the frontal region of the head was tested by an electronic von Frey filament device. In mice, cutaneous hypersensitivity was induced by repeated glyceryl trinitrate or levcromakalim injections over nine days, as measured with von Frey filaments in the hindpaw. Release of calcitonin gene-related peptide from dura mater and trigeminal ganglion was studied ex vivo. RESULTS: The ATP sensitive potassium channel inhibitor glibenclamide attenuated the spontaneous cephalic hypersensitivity in spontaneous trigeminal allodynic rats and glyceryl trinitrate-induced hypersensitivity of the hindpaw in mice. It also inhibited CGRP release from dura mater and the trigeminal ganglion isolated from spontaneous trigeminal allodynic rats. The hypersensitivity was also diminished by the structurally different ATP sensitive potassium channel inhibitor gliquidone. Mice injected with the ATP sensitive potassium channel opener levcromakalim developed a progressive hypersensitivity that was completely blocked by glibenclamide, confirming target engagement. CONCLUSION: The results suggest that ATP sensitive potassium channel inhibitors could be novel and highly effective drugs in the treatment of migraine.


Subject(s)
Glyburide/pharmacology , KATP Channels/antagonists & inhibitors , Migraine Disorders/drug therapy , Sulfonylurea Compounds/pharmacology , Animals , Calcitonin Gene-Related Peptide/drug effects , Calcitonin Gene-Related Peptide/metabolism , Dura Mater/drug effects , Hyperalgesia/drug therapy , Mice , Mice, Inbred C57BL , Pain Threshold/drug effects , Rats , Rats, Sprague-Dawley , Trigeminal Ganglion/drug effects
18.
Cephalalgia ; 40(9): 924-934, 2020 08.
Article in English | MEDLINE | ID: mdl-32223300

ABSTRACT

INTRODUCTION: Clinically, calcitonin gene-related peptide antagonising drugs are recognized as effective in migraine treatment, but their site of action is debated. Only a small fraction of these compounds pass the blood-brain barrier and accesses the central nervous system. Regardless, it has been argued that the central nervous system is the site of action. Here, we test this hypothesis by bypassing the blood-brain barrier through intracerebroventricular injection of calcitonin gene-related peptide antagonising drugs. METHODS: We used the glyceryl trinitrate (GTN) mouse model, which is well validated by its response to specific migraine drugs. The calcitonin gene-related peptide receptor antagonist olcegepant and the calcitonin gene-related peptide monoclonal antibody ALD405 were administered either intraperitoneally or intracerebroventricularly. The outcome measure was cutaneous mechanical allodynia. RESULTS: Mice given olcegepant intraperitoneally + GTN on day 1 had a mean 50% withdrawal threshold of 1.2 g in contrast to mice receiving placebo + GTN, which had a threshold of 0.3 g (p < 0.001). Similarly, in the ALD405 + GTN group, mice had thresholds of 1.2 g versus 0.2 g in the placebo + GTN group (p < 0.001). However, both drugs were ineffective when delivered intracerebroventricularly, as control and active groups had identical mechanical sensitivity thresholds, 0.2 g versus 0.1 g and 0.1 g versus 0.1 g for olcegepant and ALD405, respectively (p > 0.99 in both cases). DISCUSSION: The site of action of olcegepant and of the monoclonal antibody ALD405 is outside the blood-brain barrier in this mouse model of migraine. It is likely that these results can be generalised to all gepants and all antibodies and that the results are relevant for human migraine.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists/administration & dosage , Migraine Disorders , Animals , Antibodies, Monoclonal/administration & dosage , Disease Models, Animal , Injections, Intraventricular , Mice , Migraine Disorders/chemically induced , Nitroglycerin/toxicity , Piperazines/administration & dosage , Quinazolines/administration & dosage , Vasodilator Agents/toxicity
19.
20.
Eur J Pain ; 24(4): 783-790, 2020 04.
Article in English | MEDLINE | ID: mdl-31889375

ABSTRACT

BACKGROUND: In the pain field, it is essential to quantify nociceptive responses. The response to the application of von Frey filaments to the skin measures tactile sensitivity and is a surrogate marker of allodynia in states of peripheral and/or central sensitization. The method is widely used across species within the pain field. However, uncertainties appear to exist regarding the appropriate method for analysing obtained data. Therefore, there is a need for refinement of the calculations for transformation of raw data to quantifiable data. METHODS: Here, we briefly review the fundamentals behind von Frey testing using the standard up-down method and the associated statistics and show how different parameters of the statistical equation influence the calculated 50% threshold results. We discuss how to obtain the most accurate estimations in a given experimental setting. RESULTS: To enhance accuracy and reproducibility across laboratories, we present an easy to use algorithm that calculates 50% thresholds based on the exact filaments and their interval using math beyond the traditional methods. This tool is available to the everyday user of von Frey filaments and allows the insertion of all imaginable ranges of filaments and is thus applicable to data derived in any species. CONCLUSION: We advocate for the use of this algorithm to minimize inaccuracies and to improve internal and external reproducibility. SIGNIFICANCE: The von Frey testing procedure is standard for assessing peripheral and central sensitization but is associated with inaccuracies and lack of transparency in the associated math. Here, we describe these problems and present a novel statistical algorithm that calculates the exact thresholds using math beyond the traditional methods. The online platform is transparent, free of charge and easy to use also for the everyday user of von Frey filaments. Application of this resource will ultimately reduce errors due to methodological misinterpretations and increase reproducibility across laboratories.


Subject(s)
Algorithms , Pain Threshold , Pain Measurement , Physical Stimulation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...