Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
EMBO Rep ; 25(3): 1541-1569, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263330

ABSTRACT

To globally profile circRNAs, we employ RNA-Sequencing paired with chimeric junction analysis for alpha-, beta-, and gamma-herpesvirus infection. We find circRNAs are, as a population, resistant to host shutoff. We validate this observation using ectopic expression assays of human and murine herpesvirus endoribonucleases. During lytic infection, four circRNAs are commonly induced across all subfamilies of human herpesviruses, suggesting a shared mechanism of regulation. We test one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs are upregulated by either interferon-ß or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we find an interferon-stimulated circRNA, circRELL1, inhibits lytic Herpes Simplex Virus-1 infection. We previously reported circRELL1 inhibits lytic Kaposi sarcoma-associated herpesvirus infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.


Subject(s)
Herpes Simplex , Herpesviridae , Humans , Mice , Animals , RNA, Circular , Interferons , RNA, Messenger , Simplexvirus , Antiviral Agents
2.
bioRxiv ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37886542

ABSTRACT

A first line of defense during infection is expression of interferon (IFN)-stimulated gene products which suppress viral lytic infection. To combat this, herpesviruses express endoribonucleases to deplete host RNAs. Here we demonstrate that IFN-induced circular RNAs (circRNAs) can escape viral-mediated degradation. We performed comparative circRNA expression profiling for representative alpha- (Herpes simplex virus-1, HSV-1), beta- (human cytomegalovirus, HCMV), and gamma-herpesviruses (Kaposi sarcoma herpesvirus, KSHV; murine gamma-herpesvirus 68, MHV68). Strikingly, we found that circRNAs are, as a population, resistant to host shutoff. This observation was confirmed by ectopic expression assays of human and murine herpesvirus endoribonucleases. During primary lytic infection, ten circRNAs were commonly regulated across all subfamilies of human herpesviruses, suggesting a common mechanism of regulation. We tested one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs were upregulated by either IFN-ß or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we found an interferon-stimulated circRNA, circRELL1, inhibited lytic HSV-1 infection. We have previously reported circRELL1 inhibits lytic KSHV infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.

3.
mBio ; 14(1): e0354222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36692302

ABSTRACT

Transcription of herpes simplex virus 1 (HSV-1) immediate early (IE) genes is controlled at multiple levels by the cellular transcriptional coactivator, HCF-1. HCF-1 is complexed with epigenetic factors that prevent silencing of the viral genome upon infection, transcription factors that drive initiation of IE gene expression, and transcription elongation factors required to circumvent RNAPII pausing at IE genes and promote productive IE mRNA synthesis. Significantly, the coactivator is also implicated in the control of viral reactivation from latency in sensory neurons based on studies that demonstrate that HCF-1-associated epigenetic and transcriptional elongation complexes are critical to initiate IE expression and viral reactivation. Here, an HCF-1 conditional knockout mouse model (HCF-1cKO) was derived to probe the role and significance of HCF-1 in the regulation of HSV-1 latency/reactivation in vivo. Upon deletion of HCF-1 in sensory neurons, there is a striking reduction in the number of latently infected neurons that initiate viral reactivation. Importantly, this correlated with a defect in the removal of repressive chromatin associated with latent viral genomes. These data demonstrate that HCF-1 is a critical regulatory factor that governs the initiation of HSV reactivation, in part, by promoting the transition of latent viral genomes from a repressed heterochromatic state. IMPORTANCE Herpes simplex virus is responsible for a substantial worldwide disease burden. An initial infection leads to the establishment of a lifelong persistent infection in sensory neurons. Periodic reactivation can result in recurrent oral and genital lesions to more significant ocular disease. Despite the significance of this pathogen, many of the regulatory factors and molecular mechanisms that govern the viral latency-reactivation cycles have yet to be elucidated. Initiation of both lytic infection and reactivation are dependent on the expression of the viral immediate early genes. In vivo deletion of a central component of the IE regulatory paradigm, the cellular transcriptional coactivator HCF-1, reduces the epigenetic transition of latent viral genomes, thus suppressing HSV reactivation. These observations define HCF-1 as a critical regulator that controls the initiation of HSV reactivation from latency in vivo and contribute to understanding of the molecular mechanisms that govern viral reactivation.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Animals , Mice , Gene Expression Regulation, Viral , Herpesvirus 1, Human/physiology , Heterochromatin , Transcription Factors/metabolism , Transcription, Genetic , Virus Latency/physiology
4.
Cell Rep ; 39(6): 110810, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545036

ABSTRACT

The presence and abundance of viral proteins within host cells are part of the essential signatures of the cellular stages of viral infections. However, methods that can comprehensively detect and quantify these proteins are still limited, particularly for viruses with large protein coding capacity. Here, we design and experimentally validate a mass spectrometry-based Targeted herpesviRUS proTEin Detection (TRUSTED) assay for monitoring human viruses representing the three Herpesviridae subfamilies-herpes simplex virus type 1, human cytomegalovirus (HCMV), and Kaposi sarcoma-associated herpesvirus. We demonstrate assay applicability for (1) capturing the temporal cascades of viral replication, (2) detecting proteins throughout a range of virus concentrations and in in vivo models of infection, (3) assessing the effects of clinical therapeutic agents and sirtuin-modulating compounds, (4) studies using different laboratory and clinical viral strains, and (5) discovering a role for carbamoyl phosphate synthetase 1 in supporting HCMV replication.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 8, Human , Cytomegalovirus , Humans , Mass Spectrometry , Virus Replication
5.
Immunity ; 54(1): 116-131.e10, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33271120

ABSTRACT

Tumors frequently subvert major histocompatibility complex class I (MHC-I) peptide presentation to evade CD8+ T cell immunosurveillance, though how this is accomplished is not always well defined. To identify the global regulatory networks controlling antigen presentation, we employed genome-wide screening in human diffuse large B cell lymphomas (DLBCLs). This approach revealed dozens of genes that positively and negatively modulate MHC-I cell surface expression. Validated genes clustered in multiple pathways including cytokine signaling, mRNA processing, endosomal trafficking, and protein metabolism. Genes can exhibit lymphoma subtype- or tumor-specific MHC-I regulation, and a majority of primary DLBCL tumors displayed genetic alterations in multiple regulators. We established SUGT1 as a major positive regulator of both MHC-I and MHC-II cell surface expression. Further, pharmacological inhibition of two negative regulators of antigen presentation, EZH2 and thymidylate synthase, enhanced DLBCL MHC-I presentation. These and other genes represent potential targets for manipulating MHC-I immunosurveillance in cancers, infectious diseases, and autoimmunity.


Subject(s)
B-Lymphocytes/physiology , Biomarkers, Tumor/genetics , HLA Antigens/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Lineage , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Neoplastic , Genetic Testing , Genome-Wide Association Study , HLA Antigens/metabolism , Humans , Immunologic Surveillance , Lymphoma, Large B-Cell, Diffuse/metabolism , Tumor Escape/genetics
6.
mBio ; 11(3)2020 06 09.
Article in English | MEDLINE | ID: mdl-32518191

ABSTRACT

Induction of herpes simplex virus (HSV) immediate early (IE) gene transcription promotes the initiation of lytic infection and reactivation from latency in sensory neurons. IE genes are transcribed by the cellular RNA polymerase II (RNAPII) and regulated by multiple transcription factors and coactivators. The HCF-1 cellular coactivator plays a central role in driving IE expression at multiple stages through interactions with transcription factors, chromatin modulation complexes, and transcription elongation components, including the active super elongation complex/P-TEFb (SEC-P-TEFb). Here, we demonstrate that the SEC occupies the promoters of HSV IE genes during the initiation of lytic infection and during reactivation from latency. Specific inhibitors of the SEC suppress viral IE expression and block the spread of HSV infection. Significantly, these inhibitors also block the initiation of viral reactivation from latency in sensory ganglia. The potent suppression of IE gene expression by SEC inhibitors indicates that transcriptional elongation represents a determining rate-limiting stage in HSV IE gene transcription and that the SEC plays a critical role in driving productive elongation during both phases of the viral life cycle. Most importantly, this supports the model that signal-mediated induction of SEC-P-TEFb levels can promote reactivation of a population of poised latent genomes.IMPORTANCE HSV infections can cause pathologies ranging from recurrent lesions to significant ocular disease. Initiation of lytic infection and reactivation from latency in sensory neurons are dependent on the induced expression of the viral immediate early genes. Transcription of these genes is controlled at multiple levels, including modulation of the chromatin state of the viral genome and appropriate recruitment of transcription factors and coactivators. Following initiation of transcription, IE genes are subject to a key regulatory stage in which transcriptional elongation rates are controlled by the activity of the super elongation complex. Inhibition of the SEC blocks both lytic infection and reactivation from latency in sensory neurons. In addition to providing insights into the mechanisms controlling viral infection and reactivation, inhibitors of critical components such as the SEC may represent novel antivirals.


Subject(s)
Gene Expression , Genes, Immediate-Early , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/genetics , Transcriptional Elongation Factors/antagonists & inhibitors , Virus Latency/genetics , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Fibroblasts/virology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Humans , Lung/cytology , Transcriptional Elongation Factors/genetics , Vero Cells , Virus Latency/drug effects , Virus Replication/drug effects
7.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29899098

ABSTRACT

Following productive infection, bovine herpesvirus 1 (BoHV-1) establishes latency in sensory neurons. As in other alphaherpesviruses, expression of BoHV-1 immediate early (IE) genes is regulated by an enhancer complex containing the viral IE activator VP16, the cellular transcription factor Oct-1, and transcriptional coactivator HCF-1, which is assembled on an IE enhancer core element (TAATGARAT). Expression of the IE transcription unit that encodes the viral IE activators bICP0 and bICP4 may also be induced by the activated glucocorticoid receptor (GR) via two glucocorticoid response elements (GREs) located upstream of the enhancer core. Strikingly, lytic infection and reactivation from latency are consistently enhanced by glucocorticoid treatment in vivo As the coactivator HCF-1 is essential for IE gene expression of alphaherpesviruses and recruited by multiple transcription factors, we tested whether HCF-1 is required for glucocorticoid-induced IE gene expression. Depletion of HCF-1 reduced GR-mediated activation of the IE promoter in mouse neuroblastoma cells (Neuro-2A). More importantly, HCF-1-mediated GR activation of the promoter was dependent on the presence of GRE sites but independent of the TAATGARAT enhancer core element. HCF-1 was also recruited to the GRE region of a promoter lacking the enhancer core, consistent with a direct role of the coactivator in mediating GR-induced transcription. Similarly, during productive lytic infection, HCF-1 and GR occupied the IE region containing the GREs. These studies indicate HCF-1 is critical for GR activation of the viral IE genes and suggests that glucocorticoid induction of viral reactivation proceeds via an HCF-1-GR mechanism in the absence of the viral IE activator VP16.IMPORTANCE BoHV-1 transcription is rapidly activated during stress-induced reactivation from latency. The immediate early transcription unit 1 (IEtu1) promoter is regulated by the GR via two GREs. The IEtu1 promoter regulates expression of two viral transcriptional regulatory proteins, infected cell proteins 0 and 4 (bICP0 and bICP4), and thus must be stimulated during reactivation. This study demonstrates that activation of the IEtu1 promoter by the synthetic corticosteroid dexamethasone requires HCF-1. Interestingly, the GRE sites, but not the IE enhancer core element (TAATGARAT), were required for HCF-1-mediated GR promoter activation. The GR and HCF-1 were recruited to the IEtu1 promoter in transfected and infected cells. Collectively, these studies indicate that HCF-1 is critical for GR activation of the viral IE genes and suggest that an HCF-1-GR complex can stimulate the IEtu1 promoter in the absence of the viral IE activator VP16.


Subject(s)
Gene Expression Regulation, Viral , Genes, Immediate-Early , Glucocorticoids/metabolism , Herpesvirus 1, Bovine/physiology , Host Cell Factor C1/metabolism , Receptors, Glucocorticoid/metabolism , Transcription, Genetic , Animals , Cell Line , Gene Knockdown Techniques , Host Cell Factor C1/genetics , Mice , Neurons/virology
8.
Front Vet Sci ; 5: 34, 2018.
Article in English | MEDLINE | ID: mdl-29594155

ABSTRACT

Equine herpesvirus type 1 (EHV-1) is a ubiquitous and highly contagious pathogen that causes a range of disease severities with outbreaks of notable economic impact. Given the limitations in immune protection of current vaccines and the limited effectiveness of antiviral drugs on EHV-1 infections in vivo, improved treatment measures are needed to control disease. The use of drugs that alter the epigenetic state of herpes simplex virus genome has been shown to limit viral primary infection and reactivation both in vitro and in vivo. Therefore, we tested the hypothesis that maintaining a repressive epigenetic state on the EHV-1 genome in the host equine cell would decrease viral load during lytic infection. Equine fetal kidney cells (EFKCs) or isolated peripheral blood leukocytes were treated in vitro with (a) the nucleoside analog ganciclovir; (b) the histone demethylase inhibitor OG-L002; (c) both ganciclovir and OG-L002; or (d) dimethyl sulfoxide (DMSO, vehicle control); and then infected with a clinical EHV-1 isolate. Treatment of EFKCs with ganciclovir (mean 22.3 DNA copies per cell, p = 0.0005), OG-L002 (mean 25.6, p = 0.005) or both ganciclovir and OG-L002 (mean 7.1, p = 0.0001) resulted in decreased EHV-1 viral load at 24 h post-infection (hpi) in comparison with DMSO (mean 42.0), with greater impact using the combined treatment. Further, EHV-1 gene expression at 3 hpi decreased when EFKCs were infected in the presence of ganciclovir (p = 0.04) and combined treatment of ganciclovir and OG-L002 (p = 0.0003). In contrast, under similar conditions, neither ganciclovir nor OG-L002 suppressed EHV-1 infection in leukocytes. Differences between cell types, drug penetrance, or drug turnover, may have contributed to the distinct effects observed in this study.

9.
Cell ; 172(4): 784-796.e18, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29358051

ABSTRACT

Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.


Subject(s)
Adaptive Immunity , Bacteria/immunology , Histocompatibility Antigens Class I/immunology , Microbiota/immunology , Skin/immunology , T-Lymphocytes/immunology , Animals , Gene Expression Regulation/immunology , Histocompatibility Antigens Class I/genetics , Mice , Mice, Transgenic
10.
mBio ; 8(4)2017 08 15.
Article in English | MEDLINE | ID: mdl-28811345

ABSTRACT

Epigenetic regulation is based on a network of complexes that modulate the chromatin character and structure of the genome to impact gene expression, cell fate, and development. Thus, epigenetic modulators represent novel therapeutic targets used to treat a range of diseases, including malignancies. Infectious pathogens such as herpesviruses are also regulated by cellular epigenetic machinery, and epigenetic therapeutics represent a novel approach used to control infection, persistence, and the resulting recurrent disease. The histone H3K27 methyltransferases EZH2 and EZH1 (EZH2/1) are epigenetic repressors that suppress gene transcription via propagation of repressive H3K27me3-enriched chromatin domains. However, while EZH2/1 are implicated in the repression of herpesviral gene expression, inhibitors of these enzymes suppressed primary herpes simplex virus (HSV) infection in vitro and in vivo Furthermore, these compounds blocked lytic viral replication following induction of HSV reactivation in latently infected sensory ganglia. Suppression correlated with the induction of multiple inflammatory, stress, and antipathogen pathways, as well as enhanced recruitment of immune cells to in vivo infection sites. Importantly, EZH2/1 inhibitors induced a cellular antiviral state that also suppressed infection with DNA (human cytomegalovirus, adenovirus) and RNA (Zika virus) viruses. Thus, EZH2/1 inhibitors have considerable potential as general antivirals through the activation of cellular antiviral and immune responses.IMPORTANCE A significant proportion of the world's population is infected with herpes simplex virus. Primary infection and subsequent recurrent reactivation can result in diseases ranging from mild lesions to severe ocular or neurological damage. Herpesviruses are subject to epigenetic regulation that modulates viral gene expression, lytic replication, and latency-reactivation cycles. Thus, epigenetic pharmaceuticals have the potential to alter the course of infection and disease. Here, while the histone methyltransferases EZH2/1 are implicated in the suppression of herpesviruses, inhibitors of these repressors unexpectedly suppress viral infection in vitro and in vivo by induction of key components of cellular innate defense pathways. These inhibitors suppress infection by multiple viral pathogens, indicating their potential as broad-spectrum antivirals.


Subject(s)
Antiviral Agents/pharmacology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Epigenetic Repression , Herpesvirus 1, Human/drug effects , Polycomb Repressive Complex 2/antagonists & inhibitors , Virus Replication/drug effects , DNA Replication , Herpes Simplex/drug therapy , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Humans , Immunity, Innate , Virus Latency , Zika Virus/drug effects , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus/physiology , Zika Virus Infection/immunology , Zika Virus Infection/virology
11.
Cell Host Microbe ; 21(4): 507-517.e5, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28407486

ABSTRACT

The cellular transcriptional coactivator HCF-1 is required for initiation of herpes simplex virus (HSV) lytic infection and for reactivation from latency in sensory neurons. HCF-1 stabilizes the viral Immediate Early (IE) gene enhancer complex and mediates chromatin transitions to promote IE transcription initiation. In infected cells, HCF-1 was also found to be associated with a network of transcription elongation components including the super elongation complex (SEC). IE genes exhibit characteristics of genes controlled by transcriptional elongation, and the SEC-P-TEFb complex is specifically required to drive the levels of productive IE mRNAs. Significantly, compounds that enhance the levels of SEC-P-TEFb also potently stimulated HSV reactivation from latency both in a sensory ganglia model system and in vivo. Thus, transcriptional elongation of HSV IE genes is a key limiting parameter governing both the initiation of HSV infection and reactivation of latent genomes.


Subject(s)
Gene Expression Regulation, Viral , Genes, Immediate-Early , Simplexvirus/physiology , Transcription Elongation, Genetic , Virus Activation , Animals , Cell Line , Epithelial Cells/virology , Ganglia, Sensory/virology , Host Cell Factor C1/metabolism , Humans , Mice , Simplexvirus/genetics , Transcription Factors/metabolism
12.
mBio ; 7(1): e00098-16, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26884430

ABSTRACT

Like their cellular hosts, herpesviruses are subject to the regulatory impacts of chromatin assembled on their genomes. Upon infection, these viruses are assembled into domains of chromatin with heterochromatic signatures that suppress viral gene expression or euchromatic characteristics that promote gene expression. The organization and modulation of these chromatin domains appear to be intimately linked to the coordinated expression of the different classes of viral genes and thus ultimately play an important role in the progression of productive infection or the establishment and maintenance of viral latency. A recent report from the Knipe laboratory (J. S. Lee, P. Raja, and D. M. Knipe, mBio 7:e02007-15, 2016) contributes to the understanding of the dynamic modulation of chromatin assembled on the herpes simplex virus genome by monitoring the levels of characteristic heterochromatic histone modifications (histone H3 lysine 9 and 27 methylation) associated with a model viral early gene during the progression of lytic infection. Additionally, this study builds upon previous observations that the viral immediate-early protein ICP0 plays a role in reducing the levels of heterochromatin associated with the early genes.


Subject(s)
Chromatin/genetics , Histone Code , Immediate-Early Proteins/genetics , Nucleosomes/physiology , Virus Replication/genetics , Chromatin/physiology , Chromatin/virology , Gene Expression , Gene Expression Regulation, Viral , Genome, Viral , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Host-Pathogen Interactions , Humans , Nucleosomes/virology , Virus Latency
13.
Cell Host Microbe ; 18(6): 649-58, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26651941

ABSTRACT

Herpes simplex virus (HSV) reactivation from latent neuronal infection requires stimulation of lytic gene expression from promoters associated with repressive heterochromatin. Various neuronal stresses trigger reactivation, but how these stimuli activate silenced promoters remains unknown. We show that a neuronal pathway involving activation of c-Jun N-terminal kinase (JNK), common to many stress responses, is essential for initial HSV gene expression during reactivation. This JNK activation in neurons is mediated by dual leucine zipper kinase (DLK) and JNK-interacting protein 3 (JIP3), which direct JNK toward stress responses instead of other cellular functions. Surprisingly, JNK-mediated viral gene induction occurs independently of histone demethylases that remove repressive lysine modifications. Rather, JNK signaling results in a histone methyl/phospho switch on HSV lytic promoters, a mechanism permitting gene expression in the presence of repressive lysine methylation. JNK is present on viral promoters during reactivation, thereby linking a neuronal-specific stress pathway and HSV reactivation from latency.


Subject(s)
Histones/metabolism , Neurons/virology , Protein Processing, Post-Translational , Simplexvirus/physiology , Virus Activation , Animals , Cells, Cultured , Gene Expression Regulation , Mice , Phosphorylation , Promoter Regions, Genetic , Signal Transduction , Simplexvirus/genetics , Stress, Physiological
14.
Virology ; 479-480: 555-61, 2015 May.
Article in English | MEDLINE | ID: mdl-25702087

ABSTRACT

Upon infection, the genomes of herpesviruses undergo a striking transition from a non-nucleosomal structure to a chromatin structure. The rapid assembly and modulation of nucleosomes during the initial stage of infection results in an overlay of complex regulation that requires interactions of a plethora of chromatin modulation components. For herpes simplex virus, the initial chromatin dynamic is dependent on viral and host cell transcription factors and coactivators that mediate the balance between heterochromatic suppression of the viral genome and the euchromatin transition that allows and promotes the expression of viral immediate early genes. Strikingly similar to lytic infection, in sensory neurons this dynamic transition between heterochromatin and euchromatin governs the establishment, maintenance, and reactivation from the latent state. Chromatin dynamics in both the lytic infection and latency-reactivation cycles provides opportunities to shift the balance using small molecule epigenetic modulators to suppress viral infection, shedding, and reactivation from latency.


Subject(s)
Chromatin/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Viral , Simplexvirus/physiology , Virus Latency , Virus Replication , Host-Pathogen Interactions , Simplexvirus/genetics , Transcription Factors/metabolism
15.
Sci Transl Med ; 6(265): 265ra169, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25473037

ABSTRACT

Herpesviruses are highly prevalent and maintain lifelong latent reservoirs, thus posing challenges to the control of herpetic disease despite the availability of antiviral pharmaceuticals that target viral DNA replication. The initiation of herpes simplex virus infection and reactivation from latency is dependent on a transcriptional coactivator complex that contains two required histone demethylases, LSD1 (lysine-specific demethylase 1) and a member of the JMJD2 family (Jumonji C domain-containing protein 2). Inhibition of either of these enzymes results in heterochromatic suppression of the viral genome and blocks infection and reactivation in vitro. We demonstrate that viral infection can be epigenetically suppressed in three animal models of herpes simplex virus infection and disease. Treating animals with the monoamine oxidase inhibitor tranylcypromine to inhibit LSD1 suppressed viral lytic infection, subclinical shedding, and reactivation from latency in vivo. This phenotypic suppression was correlated with enhanced epigenetic suppression of the viral genome and suggests that, even during latency, the chromatin state of the virus is dynamic. Therefore, epi-pharmaceuticals may represent a promising approach to treat herpetic diseases.


Subject(s)
Epigenesis, Genetic , Herpesviridae Infections/metabolism , Oxidoreductases, N-Demethylating/antagonists & inhibitors , Oxidoreductases, N-Demethylating/physiology , Animals , Disease Models, Animal , Female , Genome, Viral , Guinea Pigs , Histone Demethylases , Mice , Mice, Inbred BALB C , Monoamine Oxidase Inhibitors/chemistry , Phenotype , Protein Structure, Tertiary , Rabbits , Recurrence , Tranylcypromine/chemistry , Vagina/virology , Virus Activation , Virus Latency , Virus Replication/drug effects , Virus Shedding
16.
Curr Protoc Microbiol ; 35: 14E.5.1-27, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25367270

ABSTRACT

Herpes Simplex Virus (HSV) is a human pathogen that establishes latency and undergoes periodic reactivation, resulting in chronic recurrent lytic infection. HSV lytic infection is characterized by an organized cascade of three gene classes; however, successful transcription and expression of the first, the immediate early class, is critical to the overall success of viral infection. This initial event of lytic infection is also highly dependent on host cell factors. This unit uses RNA interference and small molecule inhibitors to examine the role of host and viral proteins in HSV lytic infection. Methods detailing isolation of viral and host RNA and genomic DNA followed by quantitative real-time PCR allow characterization of impacts on viral transcription and replication, respectively. Western blots can be used to confirm quantitative PCR results. This combination of protocols represents a starting point for researchers interested in virus-host interactions during HSV lytic infection.


Subject(s)
Gene Expression Regulation, Viral/physiology , Simplexvirus/genetics , Cell Line , DNA, Viral/genetics , Fibroblasts/virology , Humans , Lung/cytology , RNA Interference , Real-Time Polymerase Chain Reaction , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Cultivation
17.
Curr Protoc Microbiol ; 35: 14E.6.1-21, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25367271

ABSTRACT

As with all Herpesviruses, Herpes simplex virus (HSV) has both a lytic replication phase and a latency-reactivation cycle. During lytic replication, there is an ordered cascade of viral gene expression that leads to the synthesis of infectious viral progeny. In contrast, latency is characterized by the lack of significant lytic gene expression and the absence of infectious virus. Reactivation from latency is characterized by the re-entry of the virus into the lytic replication cycle and the production of recurrent disease. This unit describes the establishment of the mouse sensory neuron model of HSV-1 latency-reactivation as a useful in vivo system for the analysis of mechanisms involved in latency and reactivation. Assays including the determination of viral yields, immunohistochemical/immunofluorescent detection of viral antigens, and mRNA quantitation are used in experiments designed to investigate the network of cellular and viral proteins regulating HSV-1 lytic infection, latency, and reactivation.


Subject(s)
Sensory Receptor Cells/virology , Simplexvirus/physiology , Virus Latency/physiology , Animals , Chlorocebus aethiops , Cornea/virology , Corneal Diseases/virology , Herpes Simplex/virology , Humans , Mice , Mice, Inbred BALB C , Sensory Receptor Cells/physiology , Tissue Culture Techniques , Vero Cells , Virus Cultivation
18.
Virology ; 449: 120-32, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24418545

ABSTRACT

Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chest and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies.


Subject(s)
Animals, Wild/virology , Cowpox virus/pathogenicity , Cowpox/virology , Disease Models, Animal , Vaccinia virus/pathogenicity , Vaccinia/virology , Animals , Cell Line , Chlorocebus aethiops , Cowpox virus/genetics , Cowpox virus/physiology , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred Strains/virology , Vaccinia virus/genetics , Vaccinia virus/physiology , Virulence , Whole Body Imaging
19.
mBio ; 5(1): e01027-13, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24425734

ABSTRACT

UNLABELLED: Upon infection, the genome of herpes simplex virus is rapidly incorporated into nucleosomes displaying histone modifications characteristic of heterochromatic structures. The initiation of infection requires complex viral-cellular interactions that ultimately circumvent this repression by utilizing host cell enzymes to remove repressive histone marks and install those that promote viral gene expression. The reversion of repression and activation of viral gene expression is mediated by the cellular coactivator HCF-1 in association with histone demethylases and methyltransferases. However, the mechanisms and the components that are involved in the initial repression remain unclear. In this study, the chromatin remodeler chromodomain helicase DNA binding (CHD3) protein is identified as an important component of the initial repression of the herpesvirus genome. CHD3 localizes to early viral foci and suppresses viral gene expression. Depletion of CHD3 results in enhanced viral immediate early gene expression and an increase in the number of transcriptionally active viral genomes in the cell. Importantly, CHD3 can recognize the repressive histone marks that have been detected in the chromatin associated with the viral genome and this remodeler is important for ultimately reducing the levels of accessible viral genomes. A model is presented in which CHD3 represses viral infection in opposition to the actions of the HCF-1 coactivator complex. This dynamic, at least in part, determines the initiation of viral infection. IMPORTANCE: Chromatin modulation of herpesvirus infection is a dynamic process involving regulatory components that mediate suppression and those that promote viral gene expression and the progression of infection. The mechanisms by which the host cell employs the assembly and modulation of chromatin as an antiviral defense strategy against an invading herpesvirus remain unclear. This study defines a critical cellular component that mediates the initial repression of infecting HSV genomes and contributes to understanding the dynamics of this complex interplay between host cell and viral pathogen.


Subject(s)
DNA Helicases/metabolism , Epigenetic Repression , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Simplexvirus/physiology , Virus Replication , Cell Line , Humans , Simplexvirus/genetics
20.
Viruses ; 5(5): 1272-91, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23698399

ABSTRACT

Successful infection of herpes simplex virus is dependent upon chromatin modulation by the cellular coactivator host cell factor-1 (HCF-1). This review focuses on the multiple chromatin modulation components associated with HCF-1 and the chromatin-related dynamics mediated by this coactivator that lead to the initiation of herpes simplex virus (HSV) immediate early gene expression.


Subject(s)
Chromatin/metabolism , Host Cell Factor C1/metabolism , Host-Pathogen Interactions , Simplexvirus/physiology , Virus Replication , Gene Expression Regulation, Viral , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...