Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39189607

ABSTRACT

West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and C. tarsalis mosquitoes. The titres of both WNV strains - WN02-1956 and NY99 - were suppressed by EILV in C6/36 cells as early as 48-72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In C. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in C. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.


Subject(s)
Culex , Mosquito Vectors , Superinfection , West Nile virus , Animals , Culex/virology , West Nile virus/physiology , Mosquito Vectors/virology , Superinfection/virology , Cell Line , West Nile Fever/transmission , West Nile Fever/virology , Virus Replication
2.
Malar J ; 21(1): 211, 2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35780113

ABSTRACT

BACKGROUND: Nchelenge District in northern Zambia suffers from holoendemic malaria transmission despite a decade of yearly indoor residual spraying (IRS) and insecticide-treated net (ITN) distributions. One hypothesis for this lack of impact is that some vectors in the area may forage in the early evening or outdoors. Anopheles gibbinsi specimens were identified in early evening mosquito collections performed in this study area, and further insight was gleaned into this taxon, including characterizing its genetic identity, feeding preferences, and potential role as a malaria vector. METHODS: Mosquitoes were collected in July and August 2019 by CDC light traps in Nchelenge District in indoor sitting rooms, outdoor gathering spaces, and animal pens from 16:00-22:00. Host detection by PCR, COI and ITS2 PCR, and circumsporozoite (CSP) ELISA were performed on all samples morphologically identified as An. gibbinsi, and a subset of specimens were selected for COI and ITS2 sequencing. To determine risk factors for increased abundance of An. gibbinsi, a negative binomial generalized linear mixed-effects model was performed with household-level variables of interest. RESULTS: Comparison of COI and ITS2 An. gibbinsi reference sequences to the NCBI database revealed > 99% identity to "Anopheles sp. 6" from Kenya. More than 97% of specimens were morphologically and molecularly consistent with An. gibbinsi. Specimens were primarily collected in animal pen traps (59.2%), followed by traps outdoors near where humans gather (24.3%), and traps set indoors (16.5%). Host DNA detection revealed a high propensity for goats, but 5% of specimens with detected host DNA had fed on humans. No specimens were positive for Plasmodium falciparum sporozoites. Animal pens and inland households > 3 km from Lake Mweru were both associated with increased An. gibbinsi abundance. CONCLUSIONS: This is the first report of An. gibbinsi in Nchelenge District, Zambia. This study provided a species identity for unknown "An. sp. 6" in the NCBI database, which has been implicated in malaria transmission in Kenya. Composite data suggest that this species is largely zoophilic and exophilic, but comes into contact with humans and the malaria parasites they carry. This species should continue to be monitored in Zambia and neighbouring countries as a potential malaria vector.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/parasitology , DNA , Malaria/epidemiology , Mosquito Vectors/parasitology , Zambia/epidemiology
3.
J Med Entomol ; 59(2): 752-757, 2022 03 16.
Article in English | MEDLINE | ID: mdl-34971369

ABSTRACT

Lyme disease, caused by Borrelia burgdorferi sensu stricto and most commonly transmitted by Ixodes scapularis Say (Ixodida: Ixodidae), is the most common tick-borne disease in Maryland. Because B. burgdorferi s.s. is maintained in enzootic cycles among wild mice (Peromyscus spp) and Ixodes spp ticks, differing patterns of parasitism of ticks on mice could impact the infection prevalence with B. burgdorferi. We determined the infection prevalence of Peromyscus spp as well as questing and partially engorged nymphal ticks collected at six sites on private land in five counties in Maryland from May to August 2020. Questing nymph infection prevalence (NIP) was 14%. We trapped 1258 mice and collected 554 ticks and 413 ear tissue samples. The prevalence of infested Peromyscus spp varied based on host age and sex, with older and male mice more likely to be infested. We detected a significant difference amongst the proportion of attached Ixodes and the location of trapping. Similarly, the prevalence of B. burgdorferi infected Peromyscus spp mice varied between locations (average mouse infection prevalence was 40%), with the highest prevalence in locations where Ixodes were the most commonly found ticks. The B. burgdorferi infection prevalence in partially engorged I. scapularis nymphs retrieved from Peromyscus spp was ~36% which lends further support to the host infection prevalence. Local differences in distribution of infected vectors and reservoirs are important factors to consider when planning interventions to reduce Lyme disease risk.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease , Rodent Diseases , Spirochaetaceae , Animals , Lyme Disease/epidemiology , Male , Maryland/epidemiology , Nymph , Peromyscus , Prevalence , Rodent Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL