Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 281: 294-303, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30658760

ABSTRACT

Holder pasteurization (62.5 °C, 30 min) of human milk denatures beneficial proteins. The present paper aimed to assess whether this can affect the kinetics of peptide release during digestion at the preterm stage. Raw (RHM) or pasteurized (PHM) human milk were digested in triplicates using an in vitro dynamic system. Mass spectrometry and multivariate statistics were conducted. Pre-proteolysis occurred mostly on ß-casein, for which cumulative peptide abundance was significantly greater in PHM over 28% of the hydrolysed sequence. Eight clusters resumed the kinetics of peptide release during digestion, which differed on seven clusters (69% of the 1134 peptides). Clusters associated to the heat-denaturated proteins, lactoferrin and bile salt-stimulated lipase, presented different kinetics of release during digestion, unlike that for ß-casein. Some bioactive peptides from ß-casein presented significant different abundances between PHM and RHM before digestion (1-18, 185-211) or in during intestinal digestion (154-160, 161-166). Further physiological consequences should be investigated.


Subject(s)
Milk, Human/chemistry , Pasteurization , Bile Acids and Salts/analysis , Caseins/analysis , Cluster Analysis , Digestion , Hot Temperature , Humans , Hydrogen-Ion Concentration , Infant, Premature/growth & development , Lactoferrin/analysis , Milk Proteins/analysis , Peptides/analysis , Proteolysis
2.
Am J Clin Nutr ; 105(2): 379-390, 2017 02.
Article in English | MEDLINE | ID: mdl-28052887

ABSTRACT

BACKGROUND: Holder pasteurization has been reported to modify human milk composition and structure by inactivating bile salt-stimulated lipase (BSSL) and partially denaturing some of its proteins, potentially affecting its subsequent digestion. OBJECTIVE: We sought to determine the impact of human milk pasteurization on gastric digestion (particularly for proteins and lipids) in preterm infants who were fed their mothers' own milk either raw or pasteurized. DESIGN: In a randomized controlled trial, 12 hospitalized tube-fed preterm infants were their own control group in comparing the gastric digestion of raw human milk (RHM) with pasteurized human milk (PHM). Over a 6-d sequence, gastric aspirates were collected 2 times/d before and after RHM or PHM ingestion. The impact of milk pasteurization digestive kinetics and disintegration was tested with the use of a general linear mixed model. RESULTS: Despite inactivating BSSL, instantaneous lipolysis was not affected by pasteurization (mean ± SD at 90 min: 12.6% ± 4.7%; P > 0.05). Lipolysis occurred in milk before digestion and was higher for PHM than for RHM (mean ± SD: 3.2% ± 0.6% and 2.2% ± 0.8%, respectively; P < 0.001). Pasteurization enhanced the proteolysis of lactoferrin (P < 0.01) and reduced that of α-lactalbumin (only at 90 min) (P < 0.05). Strong emulsion destabilization was observed, with smaller aggregates and a higher specific surface for PHM (P < 0.05). Pasteurization did not affect gastric emptying (∼30-min half time) or pH (mean ± SD: 4.4 ± 0.8) at 90 min. CONCLUSIONS: Overall, pasteurization had no impact on the gastric digestion of lipids and some proteins from human milk but did affect lactoferrin and α-lactalbumin proteolysis and emulsion disintegration. Freeze-thawing and pasteurization increased the milk lipolysis before digestion but did not affect gastric lipolysis. Possible consequences on intestinal digestion and associated nutritional outcomes were not considered in this study. This trial was registered at clinicaltrials.gov as NCT02112331.


Subject(s)
Digestion , Milk, Human/chemistry , Pasteurization , Caseins/blood , Dietary Carbohydrates/analysis , Dietary Fats/analysis , Dietary Proteins/analysis , Fatty Acids/analysis , Gastric Emptying , Gastric Mucosa/metabolism , Humans , Hydrogen-Ion Concentration , Infant , Infant Nutritional Physiological Phenomena , Infant, Premature , Lactalbumin/blood , Lactoferrin/blood , Lipolysis , Milk Proteins/chemistry , Proteolysis , Serum Albumin/metabolism , Sterol Esterase/antagonists & inhibitors , Sterol Esterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL