Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Eur J Haematol ; 109(3): 271-281, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35617105

ABSTRACT

BACKGROUND: Cell-free DNA (cfDNA) and nucleosomes, consisting of cfDNA and histones, are markers of cell activation and damage. In systemic inflammation these markers predict severity and fatality. However, the role of cfDNA in acute Graft-versus-Host Disease (aGvHD), a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), is unknown. OBJECTIVE: The aim of this study is to investigate the role of cfDNA as a marker of aGvHD. METHODS: We followed nucleosome levels in 37 allogeneic HSCT patients and an established xenotransplantation mouse model. We determined the origin of cfDNA with a species-specific polymerase chain reaction. RESULTS: In the plasma of aGvHD patients, nucleosome levels significantly increased around the time of aGvHD diagnosis compared to pretransplant, concurrently with a significant increase of known aGvHD markers ST2 and REG3α. In mice, we confirmed that nucleosomes were elevated during clinically detectable aGvHD. We found cfDNA to be mainly of human origin and to a lesser extent of mouse origin, indicating that cfDNA is released by (proliferating) human xeno-reactive PBMC and damaged mouse cells. CONCLUSION: We show increased cfDNA both in an aGvHD mouse model and in aGvHD patients. We also demonstrate that donor hematopoietic cells and to a lesser degree (damaged) host cells are the cellular source of cfDNA in aGvHD. We propose that nucleosomes and cfDNA might be an additive marker for aGvHD.


Subject(s)
Cell-Free Nucleic Acids , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Acute Disease , Animals , Biomarkers , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukocytes, Mononuclear , Mice , Nucleosomes
2.
Cytotherapy ; 24(3): 302-310, 2022 03.
Article in English | MEDLINE | ID: mdl-35058143

ABSTRACT

BACKGROUND: Allogeneic hematopoietic cell transplantation (HCT) can be devastating when graft-versus-host disease (GvHD) develops. GvHD is characterized by mucosal inflammation due to breaching of epithelial barriers. Innate lymphoid cells (ILCs) are immune modulatory cells that are important in the maintenance of epithelial barriers, via their production of interleukin (IL)-22 and their T cell suppressive properties. After chemo- and radiotherapy, ILCs are depleted, and recovery after remission-induction therapy and after allogeneic HCT is slow and incomplete in a significant number of patients, which is associated with an increased risk to develop acute GvHD. OBJECTIVE: To investigate whether the presence of mature ILCs within G-CSF-mobilized HCT grafts is correlated with the development of acute GvHD after allogeneic HCT. STUDY DESIGN: We analyzed ILCs in a cohort of 36 patients who received allogeneic HCT for a hematologic malignancy, by flow-cytometric immune-phenotyping of prospectively collected, cryopreserved peripheral blood mononuclear cells (PBMCs) and donor-derived HCT grafts collected for the same patients. Biased analysis, with ILCs defined as CD3-lineage-CD45+CD127+CD161+ lymphocytes, was performed using FlowJo version 10 software. Unbiased analysis was done using FlowSOM, which uses a self-organizing map (SOM) with a minimal spanning tree (MST) to define and visualize different clusters present in the samples. RESULTS: Remission-induction therapy significantly depleted ILCs from the blood, and patients who had a relatively low percentage of ILCs before allogeneic HCT were significantly more prone to develop acute GvHD, confirming previous findings in a separate cohort. Allogeneic HCT grafts, which were all obtained from the blood of G-CSF-mobilized healthy donors, contained ILCs at a frequency very similar to the peripheral blood of healthy individuals. The ILC subset composition was also comparable to that of the blood of healthy individuals, with the exception of NKp44+ ILC3s, which were significantly more abundant in HCT grafts. The relative ILC content of the graft tended to correlate with ILC reconstitution after allogeneic HCT, suggesting that peripheral expansion of transplanted mature ILCs may contribute to early ILC reconstitution after allogeneic HCT. Patients who received a relatively ILC-poor HCT graft had a significantly increased risk to develop acute GvHD, compared with patients who received relatively ILC-rich allogeneic HCT grafts. Unbiased phenotypic analysis with the FlowSOM algorithm confirmed that allogeneic HCT grafts of patients who developed acute GvHD contained a lower frequency of ILCs that clustered in NKp44+ ILC3 signature groups. CONCLUSION: The presence of ILCs in allogeneic HCT grafts is associated with a reduced risk to develop acute GvHD. These data suggest that enhancement of ILC reconstitution of ILC3s in particular, for example via adoptive transfer of ILCs, may prevent acute GvHD and has the potential to improve outcome of allogeneic HCT recipients.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunity, Innate , Leukocytes, Mononuclear , Lymphocytes
3.
Eur J Immunol ; 51(6): 1377-1389, 2021 06.
Article in English | MEDLINE | ID: mdl-33728639

ABSTRACT

The Ig superfamily protein glycoprotein A33 (GPA33) has been implicated in immune dysregulation, but little is known about its expression in the immune compartment. Here, we comprehensively determined GPA33 expression patterns on human blood leukocyte subsets, using mass and flow cytometry. We found that GPA33 was expressed on fractions of B, dendritic, natural killer and innate lymphoid cells. Most prominent expression was found in the CD4+ T cell compartment. Naïve and CXCR5+ regulatory T cells were GPA33high , and naïve conventional CD4+ T cells expressed intermediate GPA33 levels. The expression pattern of GPA33 identified functional heterogeneity within the CD4+ central memory T cell (Tcm) population. GPA33+ CD4+ Tcm cells were fully undifferentiated, bona fide Tcm cells that lack immediate effector function, whereas GPA33- Tcm cells exhibited rapid effector functions and may represent an early stage of differentiation into effector/effector memory T cells before loss of CD62L. Expression of GPA33 in conventional CD4+ T cells suggests a role in localization and/or preservation of an undifferentiated state. These results form a basis to study the function of GPA33 and show it to be a useful marker to discriminate between different cellular subsets, especially in the CD4+ T cell lineage.


Subject(s)
Biomarkers/metabolism , CD4-Positive T-Lymphocytes/immunology , Leukocytes, Mononuclear/immunology , Membrane Glycoproteins/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Cell Differentiation , Cell Lineage , Cell Separation , Flow Cytometry , HEK293 Cells , Humans , Immunity, Innate , Immunologic Memory , Membrane Glycoproteins/genetics , Receptors, CXCR5/metabolism
5.
Ned Tijdschr Geneeskd ; 156(33): A3741, 2012.
Article in Dutch | MEDLINE | ID: mdl-22894802

ABSTRACT

A 68-year-old woman was admitted to the hospital with progressive postural instability, spasticity and mental deterioration. Cerebral MRI showed a hyperintense putamen and caudate nucleus, which is characteristic of Creutzfeldt-Jakob disease.


Subject(s)
Creutzfeldt-Jakob Syndrome/diagnosis , Postural Balance , Sensation Disorders/diagnosis , Aged , Creutzfeldt-Jakob Syndrome/complications , Diagnosis, Differential , Female , Humans , Magnetic Resonance Imaging , Postural Balance/physiology , Sensation Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...