Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(48): e2315503120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37988464

ABSTRACT

Gasdermins (GSDMs) share a common functional domain structure and are best known for their capacity to form membrane pores. These pores are hallmarks of a specific form of cell death called pyroptosis and mediate the secretion of pro-inflammatory cytokines such as interleukin 1ß (IL1ß) and interleukin 18 (IL18). Thereby, Gasdermins have been implicated in various immune responses against cancer and infectious diseases such as acute Salmonella Typhimurium (S.Tm) gut infection. However, to date, we lack a comprehensive functional assessment of the different Gasdermins (GSDMA-E) during S.Tm infection in vivo. Here, we used epithelium-specific ablation, bone marrow chimeras, and mouse lines lacking individual Gasdermins, combinations of Gasdermins or even all Gasdermins (GSDMA1-3C1-4DE) at once and performed littermate-controlled oral S.Tm infections in streptomycin-pretreated mice to investigate the impact of all murine Gasdermins. While GSDMA, C, and E appear dispensable, we show that GSDMD i) restricts S.Tm loads in the gut tissue and systemic organs, ii) controls gut inflammation kinetics, and iii) prevents epithelium disruption by 72 h of the infection. Full protection requires GSDMD expression by both bone-marrow-derived lamina propria cells and intestinal epithelial cells (IECs). In vivo experiments as well as 3D-, 2D-, and chimeric enteroid infections further show that infected IEC extrusion proceeds also without GSDMD, but that GSDMD controls the permeabilization and morphology of the extruding IECs, affects extrusion kinetics, and promotes overall mucosal barrier capacity. As such, this work identifies a unique multipronged role of GSDMD among the Gasdermins for mucosal tissue defense against a common enteric pathogen.


Subject(s)
Gasdermins , Salmonella Infections , Animals , Mice , Salmonella Infections/prevention & control , Salmonella typhimurium , Inflammation , Epithelial Cells , Inflammasomes
2.
Elife ; 112022 09 20.
Article in English | MEDLINE | ID: mdl-36124553

ABSTRACT

Despite the remarkable successes of cancer immunotherapies, the majority of patients will experience only partial response followed by relapse of resistant tumors. While treatment resistance has frequently been attributed to clonal selection and immunoediting, comparisons of paired primary and relapsed tumors in melanoma and breast cancers indicate that they share the majority of clones. Here, we demonstrate in both mouse models and clinical human samples that tumor cells evade immunotherapy by generating unique transient cell-in-cell structures, which are resistant to killing by T cells and chemotherapies. While the outer cells in this cell-in-cell formation are often killed by reactive T cells, the inner cells remain intact and disseminate into single tumor cells once T cells are no longer present. This formation is mediated predominantly by IFNγ-activated T cells, which subsequently induce phosphorylation of the transcription factors signal transducer and activator of transcription 3 (STAT3) and early growth response-1 (EGR-1) in tumor cells. Indeed, inhibiting these factors prior to immunotherapy significantly improves its therapeutic efficacy. Overall, this work highlights a currently insurmountable limitation of immunotherapy and reveals a previously unknown resistance mechanism which enables tumor cells to survive immune-mediated killing without altering their immunogenicity.


Cancer immunotherapies use the body's own immune system to fight off cancer. But, despite some remarkable success stories, many patients only see a temporary improvement before the immunotherapy stops being effective and the tumours regrow. It is unclear why this occurs, but it may have to do with how the immune system attacks cancer cells. Immunotherapies aim to activate a special group of cells known as killer T-cells, which are responsible for the immune response to tumours. These cells can identify cancer cells and inject toxic granules through their membranes, killing them. However, killer T-cells are not always effective. This is because cancer cells are naturally good at avoiding detection, and during treatment, their genes can mutate, giving them new ways to evade the immune system. Interestingly, when scientists analysed the genes of tumour cells before and after immunotherapy, they found that many of the genes that code for proteins recognized by T-cells do not change significantly. This suggests that tumours' resistance to immune attack may be physical, rather than genetic. To investigate this hypothesis, Gutwillig et al. developed several mouse tumour models that stop responding to immunotherapy after initial treatment. Examining cells from these tumours revealed that when the immune system attacks, they reorganise by getting inside one another. This allows some cancer cells to hide under many layers of cell membrane. At this point killer T-cells can identify and inject the outer cell with toxic granules, but it cannot reach the cells inside. This ability of cancer cells to hide within one another relies on them recognising when the immune system is attacking. This happens because the cancer cells can detect certain signals released by the killer T-cells, allowing them to hide. Gutwillig et al. identified some of these signals, and showed that blocking them stopped cancer cells from hiding inside each other, making immunotherapy more effective. This new explanation for how cancer cells escape the immune system could guide future research and lead to new cancer treatments, or approaches to boost existing treatments. Understanding the process in more detail could allow scientists to prevent it from happening, by revealing which signals to block, and when, for best results.


Subject(s)
Cell-in-Cell Formation , Melanoma , Animals , Humans , Immunologic Factors , Immunotherapy , Melanoma/therapy , Mice , Recurrence , STAT3 Transcription Factor
3.
J Exp Med ; 219(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35657353

ABSTRACT

Cancer immunology research is largely focused on the role of cytotoxic immune responses against advanced cancers. Herein, we demonstrate that CD4+ T helper (Th2) cells directly block spontaneous breast carcinogenesis by inducing the terminal differentiation of the cancer cells. Th2 cell immunity, stimulated by thymic stromal lymphopoietin, caused the epigenetic reprogramming of the tumor cells, activating mammary gland differentiation and suppressing epithelial-mesenchymal transition. Th2 polarization was required for this tumor antigen-specific immunity, which persisted in the absence of CD8+ T and B cells. Th2 cells directly blocked breast carcinogenesis by secreting IL-3, IL-5, and GM-CSF, which signaled to their common receptor expressed on breast tumor cells. Importantly, Th2 cell immunity permanently reverted high-grade breast tumors into low-grade, fibrocystic-like structures. Our findings reveal a critical role for CD4+ Th2 cells in immunity against breast cancer, which is mediated by terminal differentiation as a distinct effector mechanism for cancer immunoprevention and therapy.


Subject(s)
Breast Neoplasms , Cancer Vaccines , Breast Neoplasms/pathology , CD4-Positive T-Lymphocytes , Carcinogenesis/pathology , Cell Differentiation , Cytokines , Female , Humans , Immunotherapy , Th1 Cells , Th2 Cells
4.
J Exp Med ; 218(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34529751

ABSTRACT

Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.


Subject(s)
Anti-Bacterial Agents/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Intestines/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factors/metabolism , Animals , Gene Expression Regulation/physiology , Inflammation/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Signal Transduction/physiology
5.
Atherosclerosis ; 280: 118-125, 2019 01.
Article in English | MEDLINE | ID: mdl-30500604

ABSTRACT

BACKGROUND AND AIMS: Limiting the pro-inflammatory immune response is critical for the treatment of atherosclerosis. Regulatory B cells (Bregs) can modulate the immune response through interleukin-10 (IL-10). Current data regarding Bregs and atherosclerosis is scarce and conflicting. METHODS: In this study, we investigated the frequency of IL-10+ B cells during the development of atherosclerosis in low-density lipoprotein receptor-deficient (Ldlr-/-) mice and studied the effect of adoptive transfer of IL-10+ B cells on atherosclerosis. RESULTS: We found a very strong inverse correlation between atherosclerosis severity and the frequency of IL-10+ B cells. This effect was cholesterol-independent and observed in spleen, draining lymph nodes and peritoneal cavity. To directly assess the effects of IL-10+ B cells on atherosclerosis, we expanded IL-10+ B cells ex vivo with anti-CD40 and selected pure and viable IL-10-secreting B cells and IL-10- B cells and adoptively transferred them to Ldlr-/- mice, respectively. While IL-10- B cells were strongly atherogenic compared to control-treated mice, IL-10+ B cells did not affect lesion size. Adoptive transfer of IL-10+ B cells strongly reduced circulating leukocyte numbers and inflammatory monocytes. In addition, they decreased CD4+ T cell activation and increased IL-10+ CD4+ T cell numbers. Interestingly, both IL-10+ and IL-10- B cells exacerbated serum cholesterol levels and resulted in fatty livers, which potentially masked the beneficial effects of IL-10+ B cells on atherosclerosis. CONCLUSIONS: These findings underscore the strong immune-regulating function of IL-10+ B cells and provide additional incentives to explore effective strategies that expand IL-10+ B cells in atherosclerosis.


Subject(s)
Atherosclerosis/immunology , B-Lymphocytes, Regulatory/immunology , Interleukin-10/metabolism , Receptors, LDL/genetics , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/cytology , Cholesterol/blood , Immune System , Inflammation , Leukocytes/cytology , Liver/metabolism , Male , Mice , Mice, Knockout , Monocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...