Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5856, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195597

ABSTRACT

Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast to produce AMPs in plants. Generating a large series of 29 sets of transplastomic tobacco plants expressing nine different AMPs as fusion proteins, we show that high-level constitutive AMP expression results in deleterious plant phenotypes. However, by utilizing inducible expression and fusions to the cleavable carrier protein SUMO, the cytotoxic effects of AMPs and fused AMPs are alleviated and plants with wild-type-like phenotypes are obtained. Importantly, purified AMP fusion proteins display antimicrobial activity independently of proteolytic removal of the carrier. Our work provides expression strategies for the synthesis of toxic polypeptides in chloroplasts, and establishes transplastomic plants as efficient production platform for antimicrobial peptides.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Carrier Proteins , Plants , Plastids/genetics
2.
Curr Protoc ; 1(4): e103, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33905600

ABSTRACT

Plastids (chloroplasts) are the defining organelles of plants and eukaryotic algae. In addition to performing photosynthesis, plastids harbor numerous other metabolic pathways and therefore are often referred to as the biosynthetic center of the plant cell. The chloroplasts of seed plants possess dozens of copies of a circular genome of ∼150 kb that contains a conserved set of 120 to 130 genes. The engineering of this genome by genetic transformation is technically challenging and currently only possible in a small number of species. In this article, we describe the methods involved in generating stable chloroplast-transformed (transplastomic) plants in the model species Arabidopsis (Arabidopsis thaliana). The protocols presented here can be applied to (1) target genes in the Arabidopsis chloroplast genome by reverse genetics and (2) express reporter genes or other foreign genes of interest in plastids of Arabidopsis plants. © 2021 The Authors. Basic Protocol 1: Generation of root-derived microcallus material for biolistic transformation Basic Protocol 2: Chloroplast transformation by biolistic bombardment of root-derived microcalli Basic Protocol 3: Regeneration of transplastomic lines and seed production.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Chloroplasts/genetics , Plants, Genetically Modified/genetics , Plastids , Transformation, Genetic
3.
Nat Plants ; 5(3): 282-289, 2019 03.
Article in English | MEDLINE | ID: mdl-30778165

ABSTRACT

The development of technologies for the stable genetic transformation of plastid (chloroplast) genomes has been a boon to both basic and applied research. However, extension of the transplastomic technology to major crops and model plants has proven extremely challenging, and the species range of plastid transformation is still very much limited in that most species currently remain recalcitrant to plastid genome engineering. Here, we report an efficient plastid transformation technology for the model plant Arabidopsis thaliana that relies on root-derived microcalli as a source tissue for biolistic transformation. The method produces fertile transplastomic plants at high frequency when combined with a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-generated knockout allele of a nuclear locus that enhances sensitivity to the selection agent used for isolation of transplastomic events. Our work makes the model organism of plant biology amenable to routine engineering of the plastid genome, facilitates the combination of plastid engineering with the power of Arabidopsis nuclear genetics, and informs the future development of plastid transformation protocols for other recalcitrant species.


Subject(s)
Arabidopsis/physiology , CRISPR-Cas Systems , Plants, Genetically Modified , Plastids/genetics , Arabidopsis/cytology , Arabidopsis/genetics , Bacterial Proteins/genetics , Biolistics/methods , Cell Culture Techniques , Chloroplasts/genetics , Gene Editing , Gene Knockout Techniques , Genetic Vectors , Luminescent Proteins/genetics , Plant Roots/cytology , Plant Roots/genetics , Transformation, Genetic
4.
Plant J ; 94(1): 8-21, 2018 04.
Article in English | MEDLINE | ID: mdl-29418028

ABSTRACT

The chloroplast is a prime target for genetic engineering in plants, offering various advantages over nuclear transformation. For example, chloroplasts allow the expression of polycistronic transcripts and thus to engineer complex metabolic pathways. Each cistron within such a longer transcript needs its own expression elements. Within the 5'-UTR, such expression elements are needed for stabilizing mRNAs and for translation of the downstream reading frame. One of the few effective expression elements used so far in transplastomic approaches is the intercistronic expression element (IEE). The IEE is derived from the psbT-psbH intergenic region and includes a target sequence of the RNA binding protein HCF107. We here show that excessive expression of the IEE can lead to specific defects of endogenous chloroplast mRNA stabilization, likely via depletion of HCF107. Key players in chloroplast transcript stabilization and translation are pentatricopeptide repeat (PPR) proteins, which are structurally related to HCF107. PPR proteins that stabilize mRNAs leave behind short RNA footprints that are indicators of their activity. We identified such sRNAs in tobacco, and demonstrate that they are sufficient to stabilize and stimulate translation of mRNAs from synthetic dicistronic transgenes in chloroplasts. Thus, minimal sequence elements are generally adequate to support key steps in chloroplast gene expression, i.e. RNA stability and translation. Furthermore, our analysis expands the repertoire of available expression elements to facilitate the assembly and expression of multi-gene ensembles in the chloroplast.


Subject(s)
Chloroplasts/metabolism , Operon/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Transgenes/genetics , Binding Sites , Chloroplasts/genetics , DNA, Intergenic/genetics , Plants, Genetically Modified , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
5.
J Exp Bot ; 67(8): 2495-506, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26969746

ABSTRACT

Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons.


Subject(s)
Biosynthetic Pathways , Chloroplasts/metabolism , Chloroplasts/radiation effects , Cytochrome P-450 Enzyme System/metabolism , Light , Nicotiana/genetics , Nitriles/metabolism , Sorghum/enzymology , Biomass , Biosynthetic Pathways/genetics , Biosynthetic Pathways/radiation effects , Chloroplasts/ultrastructure , Chromatography, Liquid , Gene Expression Regulation, Enzymologic/radiation effects , Genome, Chloroplast , Genome, Plant , Glucosides/metabolism , Mass Spectrometry , Operon/genetics , Phenotype , Photosynthesis/radiation effects , Plants, Genetically Modified , Protein Subunits/metabolism , Transformation, Genetic/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...