Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Ecol Evol ; 9(20): 11695-11706, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31695879

ABSTRACT

The growing threat of global climate change has led to a profusion of studies examining the effects of warming on biota. Despite the potential importance of natural variability such as diurnal temperature fluctuations, most experimental studies on warming are conducted under stable temperatures. Here, we investigated whether the responses of an aquatic invertebrate grazer (Lymnaea stagnalis) to an increased average temperature differ when the thermal regime is either constant or fluctuates diurnally. Using thermal response curves for several life-history and immune defense traits, we first identified the optimum and near-critically high temperatures that Lymnaea potentially experience during summer heat waves. We then exposed individuals that originated from three different populations to these two temperatures under constant or fluctuating thermal conditions. After 7 days, we assessed growth, reproduction, and two immune parameters (phenoloxidase-like activity and antibacterial activity of hemolymph) from each individual. Exposure to the near-critically high temperature led to increased growth rates and decreased antibacterial activity of hemolymph compared to the optimum temperature, whilst temperature fluctuations had no effect on these traits. The results indicate that the temperature level per se, rather than the variability in temperature was the main driver altering trait responses in our study species. Forecasting responses in temperature-related responses remains challenging, due to system-specific properties that can include intraspecific variation. However, our study indicates that experiments examining the effects of warming using constant temperatures can give similar predictions as studies with fluctuating thermal dynamics, and may thus be useful indicators of responses in nature.

2.
J Anim Ecol ; 84(3): 712-722, 2015 May.
Article in English | MEDLINE | ID: mdl-25376344

ABSTRACT

Movement and dispersal are critical processes for almost all organisms in natural populations. Understanding their causes and consequences is therefore of high interest. While both theoretical and empirical work suggest that dispersal, more exactly emigration, is plastic and may be a function of local population density, the functional relationship between the underlying movement strategies and population density has received less attention. We here present evidence for the shape of this reaction norm and are able to differentiate between three possible cues: the relative number of individuals, the presence of metabolites (chemical cues) and resource availability. We performed microcosm experiments with the ciliate model organism Tetrahymena in order to understand the plasticity of movement strategies with respect to local density while controlling for possible confounding effects mediated by the availability of different cues. In addition, we investigated how an Allee effect can influence movement and dispersal plasticity. Our findings suggest that movement strategies in Tetrahymena are plastic and density-dependent. The observed movement reaction norm was U-shaped. This may be due to an Allee effect which led to negative density dependence at low population densities and generally positive density dependence at high population densities due to local competition. This possibly adaptive density-dependent movement strategy was likely mediated by chemical cues. Our experimental work in highly controlled conditions indicates that both environmental cues as well as inherent population dynamics must be considered to understand movement and dispersal.


Subject(s)
Tetrahymena/physiology , Animal Distribution , Animals , Cues , Locomotion , Models, Biological , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...