Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Brain Behav Evol ; 99(2): 69-85, 2024.
Article in English | MEDLINE | ID: mdl-38527443

ABSTRACT

INTRODUCTION: The gray short-tailed opossum, Monodelhis domestica (M. domestica), is a widely used marsupial model species that presents unique advantages for neurodevelopmental studies. Notably their extremely altricial birth allows manipulation of postnatal pups at timepoints equivalent to embryonic stages of placental mammals. A robust literature exists on the development of short-tailed opossums, but many researchers working in the more conventional model species of mice and rats may find it daunting to identify the appropriate age at which to conduct experiments. METHODS: Here, we present detailed staging diagrams taken from photographic observations of 40 individual pups, in 6 litters, over 25 timepoints across postnatal development. We also present a comparative neurodevelopmental timeline of short-tailed opossums (M. domestica), the house mouse (Mus musculus), and the laboratory rat (Rattus norvegicus) during embryonic as well as postnatal development, using timepoints taken from this study and a review of existing literature, and use this dataset to present statistical models comparing the opossum to the rat and mouse. RESULTS: One aim of this research was to aid in testing the generalizability of results found in rodents to other mammalian brains, such as the more distantly related metatherians. However, this broad dataset also allows the identification of potential heterochronies in opossum development compared to rats and mice. In contrast to previous work, we found broad similarity between the pace of opossum neural development with that of rats and mice. We also found that development of some systems was accelerated in the opossum, such as the forelimb motor plant, oral motor control, and some aspects of the olfactory system, while the development of the cortex, some aspects of the retina, and other aspects of the olfactory system are delayed compared to the rat and mouse. DISCUSSION: The pace of opossum development is broadly similar to that of mice and rats, which underscores the usefulness of this species as a compliment to the more commonly used rodents. Many features that differ the most between opossums and rats and mice were either clustered around the day of birth and were features that have functional importance for the pup immediately after or during birth, or were features that have reduced functional importance for the pup until later in postnatal development, given that it is initially attached to the mother.


Subject(s)
Monodelphis , Animals , Mice , Rats , Monodelphis/anatomy & histology , Benchmarking , Female , Models, Animal , Male , Species Specificity
2.
J Neurophysiol ; 131(1): 106-123, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38092416

ABSTRACT

Primates are characterized by specializations for manual manipulation, including expansion of posterior parietal cortex (PPC) and, in Catarrhines, evolution of a dexterous hand and opposable thumb. Previous studies examined functional interactions between motor cortex and PPC in New World monkeys and galagos, by inactivating M1 and evoking movements from PPC. These studies found that portions of PPC depend on M1 to generate movements. We now add a species that more closely resembles humans in hand morphology and PPC: macaques. Inactivating portions of M1 resulted in all evoked movements being reduced (28%) or completely abolished (72%) at the PPC sites tested (in areas 5L, PF, and PFG). Anterior parietal area 2 was similarly affected (26% reduced and 74% abolished) and area 1 was the least affected (12% no effect, 54% reduced, and 34% abolished). Unlike previous studies in New World monkeys and galagos, interactions between both nonanalogous (heterotopic) and analogous (homotopic) M1 and parietal movement domains were commonly found in most areas. These experiments demonstrate that there may be two parallel networks involved in motor control: a posterior parietal network dependent on M1 and a network that includes area 1 that is relatively independent of M1. Furthermore, it appears that the relative size and number of cortical fields in parietal cortex in different species correlates with homotopic and heterotopic effect prevalence. These functional differences in macaques could contribute to more numerous and varied muscle synergies across major muscle groups, supporting the expansion of the primate manual behavioral repertoire observed in Old World monkeys.NEW & NOTEWORTHY Motor cortex and anterior and posterior parietal cortex form a sensorimotor integration network. We tested the extent to which parietal areas could initiate movements independent of M1. Our findings support the contention that, although areas 2, 5L, PF, and PFG are highly dependent on M1 to produce movement, area 1 may constitute a parallel corticospinal pathway that can function somewhat independently of M1. A similar functional architecture may underlie dexterous tool use in humans.


Subject(s)
Motor Cortex , Humans , Animals , Motor Cortex/physiology , Galago/physiology , Parietal Lobe/physiology , Movement/physiology , Macaca , Platyrrhini
3.
Proc Natl Acad Sci U S A ; 119(41): e2113896119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36201538

ABSTRACT

Advances in sequencing techniques have made comparative studies of gene expression a current focus for understanding evolutionary and developmental processes. However, insights into the spatial expression of genes have been limited by a lack of robust methodology. To overcome this obstacle, we developed methods and software tools for quantifying and comparing tissue-wide spatial patterns of gene expression within and between species. Here, we compare cortex-wide expression of RZRß and Id2 mRNA across early postnatal development in mice and voles. We show that patterns of RZRß expression in neocortical layer 4 are highly conserved between species but develop rapidly in voles and much more gradually in mice, who show a marked expansion in the relative size of the putative primary visual area across the first postnatal week. Patterns of Id2 expression, by contrast, emerge in a dynamic and layer-specific sequence that is consistent between the two species. We suggest that these differences in the development of neocortical patterning reflect the independent evolution of brains, bodies, and sensory systems in the 35 million years since their last common ancestor.


Subject(s)
Gene Expression Regulation, Developmental , Neocortex , Animals , Arvicolinae/genetics , Cerebral Cortex , Gene Expression , Mice , Neocortex/metabolism , RNA, Messenger/metabolism
4.
Curr Biol ; 32(13): 2935-2941.e3, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35617952

ABSTRACT

Bats have evolved behavioral specializations that are unique among mammals, including self-propelled flight and echolocation. However, areas of motor cortex that are critical in the generation and fine control of these unique behaviors have never been fully characterized in any bat species, despite the fact that bats compose ∼25% of extant mammalian species. Using intracortical microstimulation, we examined the organization of motor cortex in Egyptian fruit bats (Rousettus aegyptiacus), a species that has evolved a novel form of tongue-based echolocation.1,2 We found that movement representations include an enlarged tongue region containing discrete subregions devoted to generating distinct tongue movement types, consistent with their behavioral specialization generating active sonar using tongue clicks. This magnification of the tongue in motor cortex is comparable to the enlargement of somatosensory representations in species with sensory specializations.3-5 We also found a novel degree of coactivation between the forelimbs and hindlimbs, both of which are involved in altering the shape and tension of wing membranes during flight. Together, these findings suggest that the organization of motor cortex has coevolved with peripheral morphology in bats to support the unique motor demands of flight and echolocation.


Subject(s)
Chiroptera , Echolocation , Motor Cortex , Animals , Chiroptera/physiology , Echolocation/physiology , Flight, Animal/physiology , Sound , Wings, Animal
5.
J Neurophysiol ; 127(5): 1363-1387, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35417261

ABSTRACT

In the present investigation, we examined the role of different cortical fields in the fronto-parietal reaching and grasping network in awake, behaving macaque monkeys. This network is greatly expanded in primates compared to other mammals and coevolved with glabrous hands with opposable thumbs and the extraordinary dexterous behaviors employed by a number of primates, including humans. To examine this, we reversibly deactivated the primary motor area (M1), anterior parietal area 2, and posterior parietal areas 5L and 7b individually while monkeys were performing two types of reaching and grasping tasks. Reversible deactivation was accomplished with small microfluidic thermal regulators abutting specifically targeted cortical areas. Placement of these devices in the different cortical fields was confirmed post hoc in histologically processed tissue. Our results indicate that the different areas examined form a complex network of motor control that is overlapping. However, several consistent themes emerged that suggest the independent roles that motor cortex, area 2, area 7b, and area 5L play in the motor planning and execution of reaching and grasping movements. Area 5L is involved in the early stages and area 7b the later stages of a reaching and grasping movement, motor cortex is involved in all aspects of the execution of the movement, and area 2 provides proprioceptive feedback throughout the movement. We discuss our results in the context of previous studies that explored the fronto-parietal network, the overlapping (but also independent) functions of different nodes of this network, and the rapid compensatory plasticity of this network.NEW & NOTEWORTHY This is the first study to directly compare the results of cooling different portions of the fronto-parietal reaching and grasping network (motor cortex, anterior and posterior parietal cortex) in the same animals and the first to employ a complex, bimanual reaching and grasping task that is ethologically relevant. Whereas cooling area 7b or area 5L evoked deficits at distinct task phases, cooling M1 evoked a general set of deficits and cooling area 2 evoked proprioceptive deficits.


Subject(s)
Motor Cortex , Wakefulness , Animals , Hand Strength/physiology , Haplorhini , Mammals , Motor Cortex/physiology , Movement/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology
6.
Brain Behav Evol ; 97(1-2): 108-120, 2022.
Article in English | MEDLINE | ID: mdl-35114672

ABSTRACT

In the following review, we describe the types of phenotypic changes to the neocortex that occur over the longer time scale of evolution, and over the shorter time scale of an individual lifetime. To understand how phenotypic variability emerges in the neocortex, it is important to consider the cortex as part of an integrated system of the brain, the body, the environment in which the brain and body develops and evolves, and the affordances available within a particular environmental context; changes in any part of this brain/body/environment network impact the neocortex. We provide data from comparative studies on a wide variety of mammals that demonstrate that body morphology, the sensory epithelium, and the use of a particular morphological structure have a profound impact on neocortical organization and connections. We then discuss the genetic and epigenetic factors that contribute to the development of the neocortex, as well as the role of spontaneous and sensory driven activity in constructing a nervous system. Although the evolution of the neocortex cannot be studied directly, studies in which developmental processes are experimentally manipulated provide important insights into how phenotypic transformations could occur over the course of evolution and demonstrate that relatively small alterations to the body and/or the environment in which an individual develops can manifest as large changes to the neocortex. Finally, we discuss how these phenotypic alterations to the neocortex impact an important target of selection - behavior.


Subject(s)
Biological Evolution , Neocortex , Animals , Environment , Mammals/anatomy & histology , Neocortex/anatomy & histology
7.
STAR Protoc ; 2(2): 100421, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33870226

ABSTRACT

This protocol presents a workflow for detecting differences in kinematics between experimental conditions. It is tailored for short-tailed opossums but can be applied to any species capable of completing the ladder rung task. There are four phases of this protocol: (1) data collection, (2) pose tracking, (3) analysis of single trials, and (4) cross-condition comparisons. This pipeline implements aspects of machine learning and signal processing, allowing for rapid data analysis that provides insight into how animals perform this task. For complete details on the use and execution of this protocol, please refer to Englund et al. (2020).


Subject(s)
Biomechanical Phenomena/physiology , Monodelphis/physiology , Walking/physiology , Animals , Behavior, Animal/physiology , Computational Biology , Female , Machine Learning , Male , Signal Processing, Computer-Assisted , Video Recording
8.
Prog Neurobiol ; 201: 102008, 2021 06.
Article in English | MEDLINE | ID: mdl-33587956

ABSTRACT

Our understanding of the neural basis of somatosensation is based largely on studies of the whisker system of mice and rats and the hands of macaque monkeys. Results across these animal models are often interpreted as providing direct insight into human somatosensation. Work on these systems has proceeded in parallel, capitalizing on the strengths of each model, but has rarely been considered as a whole. This lack of integration promotes a piecemeal understanding of somatosensation. Here, we examine the functions and morphologies of whiskers of mice and rats, the hands of macaque monkeys, and the somatosensory neuraxes of these three species. We then discuss how somatosensory information is encoded in their respective nervous systems, highlighting similarities and differences. We reflect on the limitations of these models of human somatosensation and consider key gaps in our understanding of the neural basis of somatosensation.


Subject(s)
Somatosensory Cortex , Vibrissae , Animals , Haplorhini , Mice , Models, Animal , Rats
9.
iScience ; 23(9): 101527, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33083758

ABSTRACT

The early loss of vision results in a reorganized neocortex, affecting areas of the brain that process both the spared and lost senses, and leads to heightened abilities on discrimination tasks involving the spared senses. Here, we used performance measures and machine learning algorithms that quantify behavioral strategy to determine if and how early vision loss alters adaptive sensorimotor behavior. We tested opossums on a motor task involving somatosensation and found that early blind animals had increased limb placement accuracy compared with sighted controls, while showing similarities in crossing strategy. However, increased reliance on tactile inputs in early blind animals resulted in greater deficits in limb placement and behavioral flexibility when the whiskers were trimmed. These data show that compensatory cross-modal plasticity extends beyond sensory discrimination tasks to motor tasks involving the spared senses and highlights the importance of whiskers in guiding forelimb control.

10.
Elife ; 92020 09 29.
Article in English | MEDLINE | ID: mdl-32988453

ABSTRACT

Brain development relies on an interplay between genetic specification and self-organization. Striking examples of this relationship can be found in the somatosensory brainstem, thalamus, and cortex of rats and mice, where the arrangement of the facial whiskers is preserved in the arrangement of cell aggregates to form precise somatotopic maps. We show in simulation how realistic whisker maps can self-organize, by assuming that information is exchanged between adjacent cells only, under the guidance of gene expression gradients. The resulting model provides a simple account of how patterns of gene expression can constrain spontaneous pattern formation to faithfully reproduce functional maps in subsequent brain structures.


How does the brain wire itself up? One possibility is that a precise genetic blueprint tells every brain cell explicitly how it should be connected to other cells. Another option is that complex patterns emerge from relatively simple interactions between growing cells, which are more loosely controlled by genetic instruction. The barrel cortex in the brains of rats and mice features one of the most distinctive wiring patterns. There, cylindrical clusters of cells ­ or barrels ­ are arranged in a pattern that closely matches the arrangement of the whiskers on the face. Neurons in a barrel become active when the corresponding whisker is stimulated. This precise mapping between individual whiskers and their brain counterparts makes the whisker-barrel system ideal for studying brain wiring. Guidance fields are a way the brain can create cell networks with wiring patterns like the barrels. In this case, genetic instructions help to create gradients of proteins across the brain. These help the axons that connect neurons together to grow in the right direction, by navigating towards regions of higher or lower concentrations. A large number of guidance fields could map out a set of centre-point locations for axons to grow towards, ensuring the correct barrel arrangement. However, there are too few known guidance fields to explain how the barrel cortex could form by this kind of genetic instruction alone. Here, James et al. tried to find a mechanism that could create the structure of the barrel cortex, relying only on two simple guidance fields. Indeed, two guidance fields should be enough to form a coordinate system on the surface of the cortex. In particular, it was examined whether the cortical barrel map could reliably self-organize without a full genetic blueprint pre-specifying the barrel centre-points in the cortex. To do so, James et al. leveraged a mathematical model to create computer simulations; these showed that only two guidance fields are required to reproduce the map. However, this was only the case if axons related to different whiskers competed strongly for space while making connections, causing them to concentrate into whisker-specific clusters. The simulations also revealed that the target tissue does not need to specify centre-points if, instead, the origin tissue directs how strongly the axons should respond to the guidance fields. So this model describes a simple way that specific structures can be copied across the central nervous system. Understanding the way the barrel cortex is set up could help to grasp how healthy brains develop, how brain development differs in certain neurodevelopmental disorders, and how brain wiring reorganizes itself in different contexts, for example after a stroke. Computational models also have the potential to reduce the amount of animal experimentation required to understand how brains are wired, and to cast light on how brain wiring is shaped by evolution.


Subject(s)
Models, Neurological , Somatosensory Cortex , Thalamus , Vibrissae , Animals , Mice , Rats , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Thalamus/cytology , Thalamus/physiology , Vibrissae/innervation , Vibrissae/physiology
11.
Cereb Cortex ; 30(12): 6296-6312, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32691053

ABSTRACT

Which areas of the neocortex are involved in the control of movement, and how is motor cortex organized across species? Recent studies using long-train intracortical microstimulation demonstrate that in addition to M1, movements can be elicited from somatosensory regions in multiple species. In the rat, M1 hindlimb and forelimb movement representations have long been thought to overlap with somatosensory representations of the hindlimb and forelimb in S1, forming a partial sensorimotor amalgam. Here we use long-train intracortical microstimulation to characterize the movements elicited across frontal and parietal cortex. We found that movements of the hindlimb, forelimb, and face can be elicited from both M1 and histologically defined S1 and that representations of limb movement types are different in these two areas. Stimulation of S1 generates retraction of the contralateral forelimb, while stimulation of M1 evokes forelimb elevation movements that are often bilateral, including a rostral region of digit grasping. Hindlimb movement representations include distinct regions of hip flexion and hindlimb retraction evoked from S1 and hip extension evoked from M1. Our data indicate that both S1 and M1 are involved in the generation of movement types exhibited during natural behavior. We draw on these results to reconsider how sensorimotor cortex evolved.


Subject(s)
Motor Cortex/physiology , Movement , Somatosensory Cortex/physiology , Animals , Electric Stimulation , Female , Forelimb , Hindlimb , Male , Rats, Sprague-Dawley
12.
J Comp Neurol ; 528(17): 3008-3022, 2020 12 01.
Article in English | MEDLINE | ID: mdl-31930725

ABSTRACT

The earliest and most prevalent sensory experience includes tactile, thermal, and olfactory stimulation delivered to the young via contact with the mother, and in some mammals, the father. Prairie voles (Microtus ochrogaster), like humans, are biparental and serve as a model for understanding the impact of parent/offspring interactions on the developing brain. Prairie voles also exhibit natural variation in the level of tactile stimulation delivered by the parents to the offspring, and this has been well documented and quantified. Previous studies revealed that adult prairie vole offspring who received either high (HC) or low (LC) tactile contact from their parents have differences in the size of cortical fields and the connections of somatosensory cortex. In the current investigation, we examined gene expression, intraneocortical connectivity, and cortical thickness in newborn voles to appreciate when differences in HC and LC offspring begin to emerge. We observed differences in developmentally regulated genes, as well as variation in prelimbic and anterior cingulate cortical thickness at postnatal Day 1 (P1) in HC and LC voles. Results from this study suggest that parenting styles, such as those involving high or low physical contact, impact the developing neocortex via very early sensory experience as well as differences in epigenetic modifications that may emerge in HC and LC voles.


Subject(s)
Brain Cortical Thickness , Gene Expression Regulation, Developmental/physiology , Maternal Behavior/physiology , Neocortex/growth & development , Paternal Behavior/physiology , Animals , Arvicolinae , Female , Male
13.
Sci Rep ; 9(1): 16750, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727996

ABSTRACT

Developmental dynamics in Boolean models of gene networks self-organize, either into point attractors (stable repeating patterns of gene expression) or limit cycles (stable repeating sequences of patterns), depending on the network interactions specified by a genome of evolvable bits. Genome specifications for dynamics that can map specific gene expression patterns in early development onto specific point attractor patterns in later development are essentially impossible to discover by chance mutation alone, even for small networks. We show that selection for approximate mappings, dynamically maintained in the states comprising limit cycles, can accelerate evolution by at least an order of magnitude. These results suggest that self-organizing dynamics that occur within lifetimes can, in principle, guide natural selection across lifetimes.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Algorithms , Computer Simulation , Evolution, Molecular , Gene Expression Regulation, Developmental , Models, Genetic , Mutation , Selection, Genetic
14.
Neuron ; 104(1): 87-99, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31600518

ABSTRACT

Vocal learning is a behavioral trait in which the social and acoustic environment shapes the vocal repertoire of individuals. Over the past century, the study of vocal learning has progressed at the intersection of ecology, physiology, neuroscience, molecular biology, genomics, and evolution. Yet, despite the complexity of this trait, vocal learning is frequently described as a binary trait, with species being classified as either vocal learners or vocal non-learners. As a result, studies have largely focused on a handful of species for which strong evidence for vocal learning exists. Recent studies, however, suggest a continuum in vocal learning capacity across taxa. Here, we further suggest that vocal learning is a multi-component behavioral phenotype comprised of distinct yet interconnected modules. Discretizing the vocal learning phenotype into its constituent modules would facilitate integration of findings across a wider diversity of species, taking advantage of the ways in which each excels in a particular module, or in a specific combination of features. Such comparative studies can improve understanding of the mechanisms and evolutionary origins of vocal learning. We propose an initial set of vocal learning modules supported by behavioral and neurobiological data and highlight the need for diversifying the field in order to disentangle the complexity of the vocal learning phenotype.


Subject(s)
Auditory Perception , Formative Feedback , Learning , Vocalization, Animal , Alligators and Crocodiles , Animals , Behavior, Animal , Birds , Comprehension , Fishes , Imitative Behavior , Macaca , Phenotype , Phoca
15.
J Neurosci ; 39(34): 6684-6695, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31235643

ABSTRACT

In the present study, we investigated motor cortex (M1) and a small portion of premotor and parietal cortex using intracortical microstimulation in anesthetized capuchin monkeys. Capuchins are the only New World monkeys that have evolved an opposable thumb and use tools in the wild. Like most Old World monkeys and humans, capuchin monkeys have highly dexterous hands. We surveyed a large extent of M1 and found that ~22% of all evoked movements in M1 involved the digits, and the majority of these consisted of finger flexions and extensions. Different subtypes of movements could be identified, including opposable movements of digits 1 and 2 (D1 and D2). Interestingly, the pattern of such movements varied between animals. In one case, movements involved the adduction of the medial surface of D1 toward the lateral surface of D2, whereas in the other case, the tips of D1 and D2 came in contact. Unlike other primates examined, we also found extensive representations of the prehensile foot and tail. We propose that the manual behavioral repertoire of capuchin monkeys, which includes the use of tools in the wild, is well represented within the motor cortex in the form of muscle synergies between different body parts that compose these larger, complex behaviors.SIGNIFICANCE STATEMENT The ability to use tools is a milestone in human evolution. Capuchin monkeys are one of the few non-human primates that use tools in the wild. The present study is the first detailed exploration of the motor cortex of these primates using long-train intracortical microstimulation. Within primary motor cortex, we evoked finger movements involving flexions and extensions of multiple digits, or of the first and second digits alone. Interestingly, flexion of tail and toes could also be evoked. Together, these results suggest that the functional organization of the motor cortex represents not just muscles of the body, but muscle synergies that form the building blocks of the complex behavioral repertoire of these animals.


Subject(s)
Fingers/physiology , Hand Strength/physiology , Motor Cortex/physiology , Movement/physiology , Animals , Brain Mapping , Cebus , Female , Functional Laterality/physiology , Male , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Parietal Lobe/physiology , Thumb , Tool Use Behavior
16.
Curr Opin Neurobiol ; 56: 78-86, 2019 06.
Article in English | MEDLINE | ID: mdl-30658218

ABSTRACT

A central question in comparative neurobiology concerns how evolution has produced brains with expanded neocortices, composed of more areas with unique connectivity and functional properties. Some mammalian lineages, such as primates, exhibit exceptionally large cortices relative to the amount of sensory inputs from the dorsal thalamus, and this expansion is associated with a larger number of distinct cortical areas, composing a larger proportion of the cortical sheet. We propose a link between the organization of the neocortex and its expansion relative to the size of the dorsal thalamus, based on a combination of work in comparative neuroanatomy and experimental research.


Subject(s)
Neocortex , Animals , Biological Evolution , Mammals , Primates , Thalamus
17.
J Comp Neurol ; 527(3): 718-737, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29663384

ABSTRACT

The overarching goal of the current investigation was to examine the connections of anterior parietal area 2 and the medial portion of posterior parietal area 5 in macaque monkeys; two areas that are part of a network involved reaching and grasping in primates. We injected neuroanatomical tracers into specified locations in each field and directly related labeled cells to histologically identified cortical field boundaries. Labeled cells were counted so that the relative density of projections to areas 2 and 5 from other cortical fields could be determined. Projections to area 2 were restricted and were predominantly from other somatosensory areas of the anterior parietal cortex (areas 1, 3b, and 3a), the second somatosensory area (S2), and from medial and lateral portions of area 5 (5M and 5L respectively). On the other hand, area 5M had very broadly distributed projections from a number of cortical areas including anterior parietal areas, from primary motor cortex (M1), premotor cortex (PM), the supplementary motor area (SMA), cortex on the medial wall, and from posterior parietal areas 5L and 7b. The more restricted pattern of connections of area 2 indicates that it processes somatic inputs locally and provides proprioceptive information to area 5M. 5M, which at least partially overlaps with functionally defined area MIP, receives inputs from somatosensory (predominantly from area 2), posterior parietal and motor cortex, which could provide the substrate for representing multiple coordinate systems necessary for planning ethologically relevant movements, particularly those involving the hand.


Subject(s)
Motor Cortex/physiology , Neocortex/physiology , Nerve Net/physiology , Parietal Lobe/physiology , Animals , Macaca , Macaca mulatta , Macaca radiata , Motor Cortex/cytology , Neocortex/cytology , Nerve Net/cytology , Parietal Lobe/cytology
18.
J Comp Neurol ; 527(10): 1675-1688, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30444542

ABSTRACT

Early loss of vision produces dramatic changes in the functional organization and connectivity of the neocortex in cortical areas that normally process visual inputs, such as the primary and second visual area. This loss also results in alterations in the size, functional organization, and neural response properties of the primary somatosensory area, S1. However, the anatomical substrate for these functional changes in S1 has never been described. In the present investigation, we quantified the cortical and subcortical connections of S1 in animals that were bilaterally enucleated very early in development, prior to the formation of retino-geniculate and thalamocortical pathways. We found that S1 receives dense inputs from novel cortical fields, and that the density of existing cortical and thalamocortical connections was altered. Our results demonstrate that sensory systems develop in tandem and that alterations in sensory input in one system can affect the connections and organization of other sensory systems. Thus, therapeutic intervention following early loss of vision should focus not only on restoring vision, but also on augmenting the natural plasticity of the spared systems.


Subject(s)
Blindness/physiopathology , Neural Pathways/growth & development , Neuronal Plasticity/physiology , Somatosensory Cortex/growth & development , Thalamus/growth & development , Animals , Female , Male , Monodelphis
19.
Trends Neurosci ; 41(10): 744-762, 2018 10.
Article in English | MEDLINE | ID: mdl-30274608

ABSTRACT

The neocortex is one of the most distinctive structures of the mammalian brain, yet also one of the most varied in terms of both size and organization. Multiple processes have contributed to this variability, including evolutionary mechanisms (i.e., alterations in gene sequence) that alter the size, organization, and connections of neocortex, and activity dependent mechanisms that can also modify these same features. Thus, changes to the neocortex can occur over different time-scales, including within a single generation. This combination of genetic and activity dependent mechanisms that create a given cortical phenotype allows the mammalian neocortex to rapidly and flexibly adjust to different body and environmental contexts, and in humans permits culture to impact brain construction.


Subject(s)
Biological Evolution , Environment , Neocortex/physiology , Phenotype , Animals , Epigenomics , Humans , Mammals
20.
PLoS One ; 13(8): e0202089, 2018.
Article in English | MEDLINE | ID: mdl-30157204

ABSTRACT

The retinal rod pathway, featuring dedicated rod bipolar cells (RBCs) and AII amacrine cells, has been intensely studied in placental mammals. Here, we analyzed the rod pathway in a nocturnal marsupial, the South American opossum Monodelphis domestica to elucidate whether marsupials have a similar rod pathway. The retina was dominated by rods with densities of 338,000-413,000/mm². Immunohistochemistry for the RBC-specific marker protein kinase Cα (PKCα) and the AII cell marker calretinin revealed the presence of both cell types with their typical morphology. This is the first demonstration of RBCs in a marsupial and of the integration of RBCs and AII cells in the rod signaling pathway. Electron microscopy showed invaginating synaptic contacts of the PKCα-immunoreactive bipolar cells with rods; light microscopic co-immunolabeling for the synaptic ribbon marker CtBP2 confirmed dominant rod contacts. The RBC axon terminals were mostly located in the innermost stratum S5 of the inner plexiform layer (IPL), but had additional side branches and synaptic varicosities in strata S3 and S4, with S3-S5 belonging to the presumed functional ON sublayer of the IPL, as shown by immunolabeling for the ON bipolar cell marker Gγ13. Triple-immunolabeling for PKCα, calretinin and CtBP2 demonstrated RBC synapses onto AII cells. These features conform to the pattern seen in placental mammals, indicating a basically similar rod pathway in M. domestica. The density range of RBCs was 9,900-16,600/mm2, that of AII cells was 1,500-3,260/mm2. The numerical convergence (density ratio) of 146-156 rods to 4.7-6.0 RBCs to 1 AII cell is within the broad range found among placental mammals. For comparison, we collected data for the Australian nocturnal dunnart Sminthopsis crassicaudata, and found it to be similar to M. domestica, with rod-contacting PKCα-immunoreactive bipolar cells that had axon terminals also stratifying in IPL strata S3-S5.


Subject(s)
Night Vision , Retinal Rod Photoreceptor Cells/physiology , Animals , Marsupialia , Protein Kinase C/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Synapses/metabolism , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...