Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Malar J ; 23(1): 10, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183117

ABSTRACT

BACKGROUND: Endothelial cells (ECs) play a major role in malaria pathogenesis, as a point of direct contact of parasitized red blood cells to the blood vessel wall. The study of cytoskeleton structures of ECs, whose main functions are to maintain shape and provide strength to the EC membrane is important in determining the severe sequelae of Plasmodium falciparum malaria. The work investigated the cytoskeletal changes (microfilaments-actin, microtubules-tubulin and intermediate filaments-vimentin) in ECs induced by malaria sera (Plasmodium vivax, uncomplicated P. falciparum and complicated P. falciparum), in relation to the levels of pro-inflammatory cytokines. METHODS: Morphology and fluorescence intensity of EC cytoskeleton stimulated with malaria sera were evaluated using immunofluorescence technique. Levels of tumour necrosis factor (TNF) and interferon (IFN)-gamma (γ) were determined using enzyme-linked immunosorbent assay (ELISA). Control experimental groups included ECs incubated with media alone and non-malaria patient sera. Experimental groups consisted of ECs incubated with malaria sera from P. vivax, uncomplicated P. falciparum and complicated P. falciparum. Morphological scores of cytoskeletal alterations and fluorescence intensity were compared across each experiment group, and correlated with TNF and IFN-γ. RESULTS: The four morphological changes of cytoskeleton included (1) shrinkage of cytoskeleton and ECs with cortical condensation, (2) appearance of eccentric nuclei, (3) presence of "spiking pattern" of cytoskeleton and EC membrane, and (4) fragmentation and discontinuity of cytoskeleton and ECs. Significant damages were noted in actin filaments compared to tubulin and vimentin filaments in ECs stimulated with sera from complicated P. falciparum malaria. Morphological damages to cytoskeleton was positively correlated with fluorescence intensity and the levels of TNF and IFN-γ. CONCLUSIONS: ECs stimulated with sera from complicated P. falciparum malaria showed cytoskeletal alterations and increased in fluorescence intensity, which was associated with high levels of TNF and IFN-γ. Cytoskeletal changes of ECs incubated with complicated P. falciparum malaria sera can lead to EC junctional alteration and permeability changes, which is mediated through apoptotic pathway. The findings can serve as a basis to explore measures to strengthen EC cytoskeleton and alleviate severe malaria complications such as pulmonary oedema and cerebral malaria. In addition, immunofluorescence intensity of cytoskeleton could be investigated as potential prognostic indicator for malaria severity.


Subject(s)
Malaria, Cerebral , Malaria, Vivax , Humans , Vimentin , Tubulin , Endothelial Cells , Cytoskeleton , Microtubules , Tumor Necrosis Factor-alpha , Fluorescent Antibody Technique
2.
Malar J ; 22(1): 321, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872594

ABSTRACT

BACKGROUND: The incidence of malaria in Thailand has dramatically declined over the past two decades, and the goal is to eliminate malaria by 2025. Despite significant progress, one of the key challenges to malaria elimination are undetected gametocyte carriers. Human migration adds complexity to the malaria situation, as it not only sustains local transmission but also poses the risk of spreading drug-resistant parasites. Currently, no study has assessed the prevalence of gametocytes across multiple years in Plasmodium falciparum malaria patients in Thailand, and the risk factors for gametocyte carriage have not been fully explored. METHODS: Medical records of all P. falciparum malaria patients admitted from January 1, 2001 to December 31, 2020 at the Hospital for Tropical Diseases, Thailand, were retrospectively examined and a total of 1962 records were included for analysis. Both P. falciparum parasites and gametocytes were diagnosed by microscopy. A regression model was used to evaluate predictors of gametocyte carriage. RESULTS: The study demonstrated gametocyte prevalence in low malaria transmission areas. Nine risk factors for gametocyte carriage were identified: age between 15 and 24 years [adjusted odds ratio (aOR) = 1.96, 95% confidence interval (CI) 1.18-3.26], Karen ethnicity (aOR = 2.59, 95% CI 1.56-4.29), preadmission duration of fever > 7 days (aOR = 5.40, 95% CI 3.92-7.41), fever on admission (> 37.5 °C) (aOR = 0.61, 95% CI 0.48-0.77), haemoglobin ≤ 8 g/dL (aOR = 3.32, 95% CI 2.06-5.33), asexual parasite density > 5000-25,000/µL (aOR = 0.71, 95% CI 0.52-0.98), asexual parasite density > 25,000-100,000/µL (aOR = 0.74, 95% CI 0.53-1.03), asexual parasite density > 100,000/µL (aOR = 0.51, 95% CI 0.36-0.72), platelet count ≤ 100,000/µL (aOR = 0.65, 95% CI 0.50-0.85, clinical features of severe malaria (aOR = 2.33, 95% CI 1.76-3.10) and dry season (aOR = 1.41, 95% CI 1.10-1.80). An increasing incidence of imported transnational malaria cases was observed over the past two decades. CONCLUSIONS: This is the first study to determine the prevalence of gametocytes among patients with symptomatic P. falciparum malaria, identify the risk factors for gametocyte carriage, and potential gametocyte carriers in Thailand. Blocking transmission is one of the key strategies for eliminating malaria in these areas. The results might provide important information for targeting gametocyte carriers and improving the allocation of resources for malaria control in Thailand. This study supports the already nationally recommended use of a single dose of primaquine in symptomatic P. falciparum malaria patients to clear gametocytes.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Adolescent , Young Adult , Adult , Antimalarials/therapeutic use , Retrospective Studies , Prevalence , Thailand/epidemiology , Plasmodium falciparum , Malaria, Falciparum/parasitology , Risk Factors , Antiparasitic Agents , Hospitals
3.
Commun Biol ; 5(1): 1411, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564617

ABSTRACT

Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.


Subject(s)
Malaria, Vivax , Malaria , Humans , Malaria, Vivax/diagnosis , Malaria, Vivax/genetics , Likelihood Functions , Plasmodium vivax/genetics , Internet
4.
PLoS Negl Trop Dis ; 16(12): e0010986, 2022 12.
Article in English | MEDLINE | ID: mdl-36508454

ABSTRACT

BACKGROUND: Primaquine and tafenoquine are the only licensed drugs that effectively kill the hypnozoite stage and are used to prevent Plasmodium vivax malaria relapse. However, both primaquine and tafenoquine can cause acute hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient people with varying degrees of severity depending on G6PD variants. Additionally, primaquine efficacy against malaria parasites was decreased in individuals with impaired cytochrome P450 2D6 (CYP2D6) activity due to genetic polymorphisms. This study aimed to characterize G6PD and CYP2D6 genetic variations in vivax malaria patients from Yala province, a malaria-endemic area along the Thai-Malaysian border, and determine the biochemical properties of identified G6PD variants. METHODOLOGY/PRINCIPLE FINDINGS: Multiplexed high-resolution melting assay and DNA sequencing detected five G6PD variants, including G6PD Kaiping, G6PD Vanua Lava, G6PD Coimbra, G6PD Mahidol, and G6PD Kerala-Kalyan. Biochemical and structural characterization revealed that G6PD Coimbra markedly reduced catalytic activity and structural stability, indicating a high susceptibility to drug-induced hemolysis. While Kerala-Kalyan had minor effects, it is possible to develop mild adverse effects when receiving radical treatment. CYP2D6 genotyping was performed using long-range PCR and DNA sequencing, and the phenotypes were predicted using the combination of allelic variants. Decreased and no-function alleles were detected at frequencies of 53.4% and 14.2%, respectively. The most common alleles were CYP2D6*36+*10 (25.6%), *10 (23.9%), and *1 (22.2%). Additionally, 51.1% of the intermediate metabolizers showed CYP2D6*10/*36+*10 as the predominant genotype (15.9%). CONCLUSIONS/SIGNIFICANCE: Our findings provide insights about genetic variations of G6PD and CYP2D6 in 88 vivax malaria patients from Yala, which may influence the safety and effectiveness of radical treatment. Optimization of 8-aminoquinoline administration may be required for safe and effective treatment in the studied population, which could be a significant challenge in achieving the goal of eliminating malaria.


Subject(s)
Antimalarials , Cytochrome P-450 CYP2D6 , Glucosephosphate Dehydrogenase , Malaria, Vivax , Malaria , Humans , Antimalarials/adverse effects , Cytochrome P-450 CYP2D6/genetics , Genetic Variation , Glucosephosphate Dehydrogenase/genetics , Hemolysis , Malaria/drug therapy , Malaria, Vivax/drug therapy , Primaquine/adverse effects , Southeast Asian People/genetics
5.
Front Pharmacol ; 13: 1032938, 2022.
Article in English | MEDLINE | ID: mdl-36339627

ABSTRACT

Background: Plasmodium vivax remains the malaria species posing a major threat to human health worldwide owing to its relapse mechanism. Currently, the only drugs of choice for radical cure are the 8-aminoquinolines (primaquine and tafenoquine), which are capable of killing hypnozoites and thus preventing P. vivax relapse. However, the therapeutic use of primaquine and tafenoquine is restricted because these drugs can cause hemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. This study aimed to assess and understand the hemolytic risk of using 8-aminoquinolines for radical treatment in a malaria endemic area of Thailand. Methods: The prevalence of G6PD deficiency was determined using a quantitative test in 1,125 individuals. Multiplexed high-resolution meltinging (HRM) assays were developed and applied to detect 12 G6PD mutations. Furthermore, biochemical and structural characterization of G6PD variants was carried out to understand the molecular basis of enzyme deficiency. Results: The prevalence of G6PD deficiency was 6.76% (76/1,125), as assessed by a phenotypic test. Multiplexed HRM assays revealed G6PD Mahidol in 15.04% (77/512) of males and 28.38% (174/613) of females, as well as G6PD Aures in one female. G6PD activity above the 30% cut-off was detected in those carrying G6PD Mahidol, even in hemizygous male individuals. Two variants, G6PD Murcia Oristano and G6PD Songklanagarind + Viangchan, were identified for the first time in Thailand. Biochemical characterization revealed that structural instability is the primary cause of enzyme deficiency in G6PD Aures, G6PD Murcia Oristano, G6PD Songklanagarind + Viangchan, and G6PD Chinese 4 + Viangchan, with double G6PD mutations causing more severe enzyme deficiency. Conclusion: In western Thailand, up to 22% of people may be ineligible for radical cure. Routine qualitative tests may be insufficient for G6PD testing, so quantitative tests should be implemented. G6PD genotyping should also be used to confirm G6PD status, especially in female individuals suspected of having G6PD deficiency. People with double G6PD mutations are more likely to have hemolysis than are those with single G6PD mutations because the double mutations significantly reduce the catalytic activity as well as the structural stability of the protein.

6.
Trop Med Health ; 50(1): 76, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36221147

ABSTRACT

BACKGROUND: Although platelet indices are routinely available using automated blood cell counters, the clinical applications of these parameters for malaria and dengue hemorrhagic fever (DHF) have not been substantially implemented. We conducted this study to investigate the potential role of platelet indices as a prognostic marker in adult patients with Plasmodium vivax malaria, Plasmodium falciparum malaria, and DHF admitted to the Hospital for Tropical Diseases, Bangkok, Thailand. METHODS: We enrolled 219 eligible patients, comprising 96 with P. falciparum malaria, 71 with P. vivax malaria, and 52 with DHF. We evaluated the study groups' baseline clinical features and alterations of platelet indices during the first 4 days of admission. RESULTS: Upon admission, the initial laboratory findings showed no statistically significant difference in platelet count (PC), plateletcrit (PCT), or platelet distribution width (PDW) between patients with P. vivax and P. falciparum; however, mean platelet volume (MPV) was significantly higher in patients with P. falciparum. Comparisons of the initial platelet indices in malaria and DHF showed that only PC and PCT were significantly lower in DHF. Although MPV in DHF tended to be lower than in malaria, a statistically significant difference was observed only with P. falciparum. Moreover, the results also showed no significant alterations in the platelet indices among the study groups during the first 4 days of admission. CONCLUSIONS AND RECOMMENDATIONS: Clinical presentations of DHF and malaria are nonspecific and may overlap with other common tropical diseases. Alterations of initial platelet indices may be investigated in P. vivax and P. falciparum malaria mimicking DHF. Although a significant reduction in PC and PCT in DHF might be a clue for differential diagnosis of malaria, the use of MPV and PDW might be impractical. We suggest that appropriate laboratory diagnoses for malaria and dengue infections are still needed for the differential diagnosis of acute febrile patients who have a risk of malaria or dengue infections. To clarify the clinical utility of platelet indices in patients with dengue and malaria, further studies are required that particularly include patients with different severities, geographical areas, and levels of health care settings.

7.
Malar J ; 21(1): 250, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36038921

ABSTRACT

BACKGROUND: Glucose 6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PKLR) deficiencies are common causes of erythrocyte haemolysis in the presence of antimalarial drugs such as primaquine and tafenoquine. The present study aimed to elucidate such an association by thoroughly investigating the haematological indices in malaria patients with G6PD and PKLRR41Q variants. METHODS: Blood samples from 255 malaria patients from Thailand, Myanmar, Laos, and Cambodia were collected to determine haematological profile, G6PD enzyme activity and G6PD deficiency variants. The multivariate analysis was performed to investigate the association between anaemia and G6PD MahidolG487A, the most common mutation in this study. RESULTS: The prevalence of G6PD deficiency was 11.1% (27/244) in males and 9.1% (1/11) in female. The MAFs of the G6PD MahidolG487A and PKLRR41Q variants were 7.1% and 2.6%, respectively. Compared with patients with wildtype G6PD after controlling for haemoglobinopathies, G6PD-deficient patients with hemizygous and homozygous G6PD MahidolG487A exhibited anaemia with low levels of haemoglobin (11.16 ± 2.65 g/dl, p = 0.041). These patients also exhibited high levels of reticulocytes (3.60%). The median value of G6PD activity before treatment (Day 0) was significantly lower than that of after treatment (Day 28) (5.51 ± 2.54 U/g Hb vs. 6.68 ± 2.45 U/g Hb; p < 0.001). Reticulocyte levels on Day 28 were significantly increased compared to that of on Day 0 (2.14 ± 0.92% vs 1.57 ± 1.06%; p < 0.001). PKLRR41Q had no correlation with anaemia in malaria patients. The risk of anaemia inpatients with G6PD MahidolG487A was higher than wildtype patients (OR = 3.48, CI% 1.24-9.75, p = 0.018). Univariate and multivariate analyses confirmed that G6PD MahidolG487A independently associated with anaemia (< 11 g/dl) after adjusted by age, gender, Plasmodium species, parasite density, PKLRR41Q, and haemoglobinopathies (p < 0.001). CONCLUSIONS: This study revealed that malaria patients with G6PD MahidolG487A, but not with PKLRR41Q, had anaemia during infection. As a compensatory response to haemolytic anaemia after malaria infection, these patients generated more reticulocytes. The findings emphasize the effect of host genetic background on haemolytic anaemia and the importance of screening patients for erythrocyte enzymopathies and related mutations prior to anti-malarial therapy.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Hemoglobinopathies , Malaria, Vivax , Malaria , Pyruvate Kinase/genetics , Antimalarials/therapeutic use , Cross-Sectional Studies , Erythrocytes , Female , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/complications , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/genetics , Hemoglobinopathies/chemically induced , Hemoglobinopathies/drug therapy , Humans , Malaria/complications , Malaria/drug therapy , Malaria/epidemiology , Malaria, Vivax/epidemiology , Male , Primaquine/therapeutic use , Thailand/epidemiology
8.
Wellcome Open Res ; 7: 136, 2022.
Article in English | MEDLINE | ID: mdl-35651694

ABSTRACT

This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.

9.
Malar J ; 20(1): 28, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413379

ABSTRACT

Impaired autonomic control of postural homeostasis resulting in orthostatic hypotension has been described in falciparum malaria. However, severe orthostatic intolerance in Plasmodium vivax has been rarely reported. A case of non-immune previously healthy Thai woman presenting with P. vivax infection with well-documented orthostatic hypotension is described. In addition to oral chloroquine and intravenous artesunate, the patient was treated with fluid resuscitation and norepinephrine. During hospitalization, her haemodynamic profile revealed orthostatic hypotension persisting for another three days after microscopic and polymerase chain reaction confirmed parasite clearance. Potential causes are discussed.


Subject(s)
Antimalarials/adverse effects , Chloroquine/adverse effects , Hypotension, Orthostatic/diagnosis , Malaria, Vivax/complications , Plasmodium vivax/isolation & purification , Adult , Female , Humans , Hypotension, Orthostatic/parasitology , Malaria, Vivax/parasitology , Thailand
10.
Malar J ; 19(1): 182, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32414377

ABSTRACT

BACKGROUND: Pulmonary oedema (PE) is a serious complication of Plasmodium falciparum malaria which can lead to acute lung injury in severe cases. Lung macrophages are activated during malaria infection due to a complex host-immune response. The molecular basis for macrophage polarization is still unclear but understanding the predominant subtypes could lead to new therapeutic strategies where the diseases present with lung involvement. The present study was designed to study the polarization of lung macrophages, as M1 or M2 macrophages, in the lungs of severe P. falciparum malaria patients, with and without evidence of PE. METHODS: Lung tissue samples, taken from patients who died from severe P. falciparum malaria, were categorized into severe malaria with PE and without PE (non-PE). Expression of surface markers (CD68+, all macrophages; CD40+, M1 macrophage; and CD163+, M2 macrophage) on activated lung macrophages was used to quantify M1/M2 macrophage subtypes. RESULTS: Lung injury was demonstrated in malaria patients with PE. The expression of CD40 (M1 macrophage) was prominent in the group of severe P. falciparum malaria patients with PE (63.44 ± 1.98%), compared to non-PE group (53.22 ± 3.85%, p < 0.05), whereas there was no difference observed for CD163 (M2 macrophage) between PE and non-PE groups. CONCLUSIONS: The study demonstrates M1 polarization in lung tissues from severe P. falciparum malaria infections with PE. Understanding the nature of macrophage characterization in malaria infection may provide new insights into therapeutic approaches that could be deployed to reduce lung damage in severe P. falciparum malaria.


Subject(s)
Macrophages/metabolism , Malaria, Falciparum/physiopathology , Pulmonary Edema/physiopathology , Adult , Humans , Malaria, Falciparum/complications , Pulmonary Edema/parasitology , Young Adult
11.
Pharmacogenet Genomics ; 30(7): 161-165, 2020 09.
Article in English | MEDLINE | ID: mdl-32433338

ABSTRACT

Plasmodium vivax has the largest geographic range of human malaria species and is challenging to manage and eradicate due to its ability to establish a dormant liver stage, the hypnozoite, which can reactivate leading to relapse. Until recently, the only treatment approved to kill hypnozoites was the 8-aminoquinoline, primaquine, requiring daily treatment for 14 days. Tafenoquine, an 8-aminoquinoline single-dose treatment with activity against P. vivax hypnozoites, has recently been approved by the US Food and Drug Administration and Australian Therapeutic Goods Administration for the radical cure of P. vivax malaria in patients 16 years and older. We conducted an exploratory pharmacogenetic analysis (GSK Study 208099) to assess the role of host genome-wide variation on tafenoquine efficacy in patients with P. vivax malaria using data from three GSK clinical trials, GATHER and DETECTIVE Part 1 and Part 2. Recurrence-free efficacy at 6 and 4 months and time to recurrence up to 6 months postdosing were analyzed in 438 P. vivax malaria patients treated with tafenoquine. Among the approximately 10.6 million host genetic variants analyzed, two signals reached genome-wide significance (P value ≤ 5 × 10). rs62103056, and variants in a chromosome 12 intergenic region, were associated with recurrence-free efficacy at 6 and 4 months, respectively. Neither of the signals has an obvious biological rationale and would need replication in an independent population. This is the first genome-wide association study to evaluate genetic influence on response to tafenoquine in P. vivax malaria.


Subject(s)
Aminoquinolines/administration & dosage , Antimalarials/administration & dosage , Chromosomes, Human, Pair 12/genetics , Malaria, Vivax/drug therapy , Polymorphism, Single Nucleotide , Adult , Aminoquinolines/pharmacology , Antimalarials/pharmacology , Clinical Trials as Topic , Female , Genome-Wide Association Study , Humans , Malaria, Vivax/genetics , Male , Middle Aged , Pharmacogenomic Testing , Retrospective Studies , Treatment Outcome , Young Adult
12.
Korean J Parasitol ; 57(5): 499-504, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31715690

ABSTRACT

Head-lice infestation, pediculosis capitis, remains a public-health burden in many countries. The widely used first-line pediculicides and alternative treatments are often too costly for use in poor socio-economic settings. Ivermectin has been considered an alternate treatment for field practice. This study was composed of 2 parts, a cross-sectional survey and an intervention study. The main objectives were to determine the prevalence and potential factors associated with head-lice infestation, and to evaluate the effectiveness and safety of oral ivermectin administration. A community-based cross-sectional survey was conducted among 890 villagers in rural areas along Thai-Myanmar border. Females with infestations were eligible for the intervention study, and 181 participated in the intervention study. A post-treatment survey was conducted to assess acceptance of ivermectin as a treatment choice. Data analysis used descriptive statistics and a generalized-estimation-equation model adjusted for cluster effect. The study revealed the prevalence of head-lice infestation was 50% among females and only 3% among males. Age stratification showed a high prevalence among females aged <20 years, and among 50% of female school-children. The prevalence was persistent among those with a history of infestation. The major risk factors were residing in a setting with other infected cases, and sharing a hair comb. The study also confirmed that ivermectin was safe and effective for field-based practice. It was considered a preferable treatment option. In conclusion, behavior-change communication should be implemented to reduce the observed high prevalence of headlice infestation. Ivermectin may be an alternative choice for head-lice treatment, especially in remote areas.


Subject(s)
Insecticides/administration & dosage , Ivermectin/administration & dosage , Lice Infestations/drug therapy , Pediculus/drug effects , Administration, Oral , Adolescent , Adult , Animals , Child , Female , Humans , Lice Infestations/epidemiology , Lice Infestations/parasitology , Male , Middle Aged , Pediculus/physiology , Rural Population , Thailand/epidemiology , Treatment Outcome , Young Adult
13.
N Engl J Med ; 380(3): 215-228, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30650322

ABSTRACT

BACKGROUND: Treatment of Plasmodium vivax malaria requires the clearing of asexual parasites, but relapse can be prevented only if dormant hypnozoites are cleared from the liver (a treatment termed "radical cure"). Tafenoquine is a single-dose 8-aminoquinoline that has recently been registered for the radical cure of P. vivax. METHODS: This multicenter, double-blind, double-dummy, parallel group, randomized, placebo-controlled trial was conducted in Ethiopia, Peru, Brazil, Cambodia, Thailand, and the Philippines. We enrolled 522 patients with microscopically confirmed P. vivax infection (>100 to <100,000 parasites per microliter) and normal glucose-6-phosphate dehydrogenase (G6PD) activity (with normal activity defined as ≥70% of the median value determined at each trial site among 36 healthy male volunteers who were otherwise not involved in the trial). All patients received a 3-day course of chloroquine (total dose of 1500 mg). In addition, patients were assigned to receive a single 300-mg dose of tafenoquine on day 1 or 2 (260 patients), placebo (133 patients), or a 15-mg dose of primaquine once daily for 14 days (129 patients). The primary outcome was the Kaplan-Meier estimated percentage of patients who were free from recurrence at 6 months, defined as P. vivax clearance without recurrent parasitemia. RESULTS: In the intention-to-treat population, the percentage of patients who were free from recurrence at 6 months was 62.4% in the tafenoquine group (95% confidence interval [CI], 54.9 to 69.0), 27.7% in the placebo group (95% CI, 19.6 to 36.6), and 69.6% in the primaquine group (95% CI, 60.2 to 77.1). The hazard ratio for the risk of recurrence was 0.30 (95% CI, 0.22 to 0.40) with tafenoquine as compared with placebo (P<0.001) and 0.26 (95% CI, 0.18 to 0.39) with primaquine as compared with placebo (P<0.001). Tafenoquine was associated with asymptomatic declines in hemoglobin levels, which resolved without intervention. CONCLUSIONS: Single-dose tafenoquine resulted in a significantly lower risk of P. vivax recurrence than placebo in patients with phenotypically normal G6PD activity. (Funded by GlaxoSmithKline and Medicines for Malaria Venture; DETECTIVE ClinicalTrials.gov number, NCT01376167 .).


Subject(s)
Aminoquinolines/administration & dosage , Antimalarials/administration & dosage , Malaria, Vivax/drug therapy , Plasmodium vivax , Secondary Prevention/methods , Adolescent , Adult , Aminoquinolines/adverse effects , Antimalarials/adverse effects , Chloroquine/administration & dosage , Cytochrome P-450 CYP2D6/metabolism , Disease-Free Survival , Double-Blind Method , Drug Therapy, Combination , Female , Glucosephosphate Dehydrogenase/metabolism , Hemoglobins/analysis , Humans , Intention to Treat Analysis , Kaplan-Meier Estimate , Logistic Models , Malaria, Vivax/metabolism , Male , Parasitemia/drug therapy , Plasmodium vivax/isolation & purification , Primaquine/administration & dosage
14.
Int Ophthalmol ; 39(8): 1767-1782, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30269312

ABSTRACT

PURPOSE: Ophthalmic safety observations are reported from a clinical trial comparing tafenoquine (TQ) efficacy and safety versus sequential chloroquine (CQ)/primaquine (PQ) for acute Plasmodium vivax malaria. METHODS: In an active-control, double-blind study, 70 adult subjects with microscopically confirmed P. vivax malaria were randomized (2:1) to receive 400 mg TQ × 3 days or 1500 mg CQ × 3 days then 15 mg PQ × 14 days. MAIN OUTCOME MEASURES: clinically relevant changes at Day 28 and Day 90 versus baseline in the ocular examination, color vision evaluation, and corneal and retinal digital photography. RESULTS: Post-baseline keratopathy occurred in 14/44 (31.8%) patients with TQ and 0/24 with CQ/PQ (P = 0.002). Mild post-baseline retinal findings were reported in 10/44 (22.7%) patients receiving TQ and 2/24 (8.3%) receiving CQ/PQ (P = 0.15; treatment difference 14.4%, 95% CI - 5.7, 30.8). Masked evaluation of retinal photographs identified a retinal hemorrhage in one TQ patient (Day 90) and a slight increase in atrophy from baseline in one TQ and one CQ/PQ patient. Visual field sensitivity (Humphrey™ 10-2 test) was decreased in 7/44 (15.9%) patients receiving TQ and 3/24 (12.5%) receiving CQ/PQ; all cases were < 5 dB. There were no clinically relevant changes in visual acuity or macular function tests. CONCLUSIONS: There was no evidence of clinically relevant ocular toxicity with either treatment. Mild keratopathy was observed with TQ, without conclusive evidence of early retinal changes. Eye safety monitoring continues in therapeutic studies of low-dose tafenoquine (300 mg single dose). CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT01290601.


Subject(s)
Aminoquinolines/administration & dosage , Cornea/pathology , Eye Infections, Parasitic/drug therapy , Malaria, Vivax/drug therapy , Plasmodium vivax/isolation & purification , Primaquine/administration & dosage , Retina/pathology , Adult , Antimalarials/therapeutic use , Dose-Response Relationship, Drug , Double-Blind Method , Eye Infections, Parasitic/diagnosis , Eye Infections, Parasitic/parasitology , Female , Humans , Malaria, Vivax/diagnosis , Malaria, Vivax/parasitology , Male , Middle Aged , Retrospective Studies , Slit Lamp Microscopy , Time Factors , Treatment Outcome , Young Adult
15.
Parasitol Int ; 67(6): 816-823, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30165262

ABSTRACT

Malaria morbidity and mortality have decreased gradually in the Greater Mekong Subregion (GMS). Presently, WHO sets a goal to eliminate malaria by 2030 in the GMS. However, drug-resistant malaria has been reported from several endemic areas. To achieve the goal of elimination, the status of the emergence and spread of drug resistance should be monitored. In this study, the genotype of the Plasmodium falciparum chloroquine (CQ) resistance transporter gene (pfcrt) and 6 microsatellite DNA loci flanking the gene were examined. P. falciparum isolates (n = 136) was collected from malaria patients in Thailand (n = 50, 2002-2005), Vietnam (n = 39, 2004), Laos (n = 15, 2007) and Cambodia (n = 32, 2009). Amino acid sequences at codons 72-76 on the gene were determined. All of the isolates from Thailand were CQ-resistant (CVIET), as were all of the isolates from Cambodia (CVIET, CVIDT). Thirteen of the 15 isolates (87%) from Laos were CQ-resistant (CVIET, CVIDT), whereas the other 2 (13%) were CQ-susceptible (CVMNK). In contrast, 27 of the 39 isolates (69%) from Vietnam were CQ-susceptible (CVMNK), whereas the other 12 (31%) were CQ-resistant (CVIET, CVIDT, CVMDT) or mixed (CVMNK/CVIDT). The mean of expected heterozygosity of the microsatellite loci was 0.444 in the Thai population, 0.482 in the Cambodian population, and 0.734 in the Vietnamese population. Genetic diversity in the Thai population was significantly lower than that in the Vietnamese population. These results suggested that chloroquine selective pressure on P. falciparum populations is heterogeneous in the GMS. Therefore, further examination to understand the mechanisms behind the emergence and spread of drug-resistant malaria are needed.


Subject(s)
DNA, Protozoan/genetics , Genotype , Membrane Transport Proteins/genetics , Microsatellite Repeats/genetics , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Antimalarials/pharmacology , Asia, Southeastern , Chloroquine/pharmacology , Drug Resistance , Mutation
16.
Sci Rep ; 8(1): 10959, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30026484

ABSTRACT

Increased endothelial cell (EC) permeability in severe Plasmodium falciparum malaria contributes to major complications of severe malaria. This study explored EC permeability in malaria, and evaluated the potential use of FTY720 to restore EC permeability. ECs were incubated with sera from malaria patients (P. vivax, uncomplicated and complicated P. falciparum malaria). Cellular permeability was investigated using a fluorescein isothiocyanate (FITC)-dextran permeability assay. FTY720, an analogue of sphingosine-1-phosphate (S1P), was tested for its potential action in maintaining EC integrity. ECs incubated with sera from malaria patients with complicated P. falciparum showed higher fluorescein leakage compared with ECs incubated with sera from P. vivax (p < 0.001) and uncomplicated P. falciparum (p < 0.001). ECs pretreated with FTY720 before incubation with malaria sera had significantly decreased fluorescein leakage compared with no FTY720 treatment. In addition, FTY720 treatment significantly reduced fluorescein leakage for both uncomplicated (at 45 min) (p = 0.015), and complicated P. falciparum malaria (15 min) (p = 0.043). The permeability increase induced by complicated P. falciparum sera was significantly reversed and prevented by FTY720 in vitro. FTY720 may have clinical applications to protect against endothelial barrier dysfunction in severe P. falciparum malaria.


Subject(s)
Endothelial Cells/metabolism , Fingolimod Hydrochloride/pharmacology , Malaria/blood , Serum/chemistry , Adolescent , Adult , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/drug effects , Female , Humans , Malaria/immunology , Male , Middle Aged , Permeability/drug effects , Plasmodium falciparum/immunology , Plasmodium vivax/immunology , Serum/immunology , Young Adult
17.
Mediterr J Hematol Infect Dis ; 10(1): e2018015, 2018.
Article in English | MEDLINE | ID: mdl-29531652

ABSTRACT

BACKGROUND: The protective effect of α-thalassemia, a common hematological disorder in Southeast Asia, against Plasmodium falciparum malaria has been well established. However, there is much less understanding of the effect of α-thalassemia against P. vivax. Here, we aimed to investigate the proportion of α-thalassemia including the impact of α-thalassemia and HbE on the parasitemia of P. vivax in Southeast Asian malaria patients in Thailand. METHODS: A total of 210 malaria patients, admitted to the Hospital for Tropical Diseases, Thailand during 2011-2012, consisting of 159 Myanmeses, 13 Karens, 26 Thais, 3 Mons, 3 Laotians, and 6 Cambodians were recruited. Plasmodium spp. and parasite densities were determined. Group of deletion mutation (--SEA, -α3.7, -α4.2deletion) and substitution mutation (HbCS and HbE) were genotyped using multiplex gap-PCR and PCR-RFLP, respectively. RESULTS: In our malaria patients, 17/210 homozygous and 74/210 heterozygous -α3.7 deletion were found. Only 3/210 heterozygous -α4.2 and 2/210 heterozygous--SEA deletion were detected. HbE is frequently found with 6/210 homozygotes and 35/210 heterozygotes. The most common thalassemia allele frequencies in Myanmar population were -α3.7 deletion (0.282), followed by HbE (0.101), HbCS (0.013), -α4.2 deletion (0.009), and --SEA deletion (0.003). Only density of P. vivax in α-thalassemia trait patients (-α3.7/-α3.7, --SEA/αα, -α3.7/-α4.2) but not in silent α-thalassemia (-α3.7/αα, -α4.2/αα, ααCS/αα) were significantly higher compared with non-α-thalassemia patients (p=0.027). HbE did not affect P. vivax parasitemia. The density of P. falciparum significantly increased in heterozygous HbE patients (p=0.046). CONCLUSIONS: Alpha-thalassemia trait is associated with high levels of P. vivax parasitemia in malaria patients in Southeast Asia.

18.
PLoS One ; 12(11): e0187376, 2017.
Article in English | MEDLINE | ID: mdl-29121061

ABSTRACT

BACKGROUND: Tafenoquine is an investigational 8-aminoquinoline for the prevention of Plasmodium vivax relapse. Tafenoquine has a long half-life and the potential for more convenient dosing, compared with the currently recommended 14-day primaquine regimen. METHODS: This randomized, active-control, double-blind trial was conducted in Bangkok, Thailand. Seventy patients with microscopically confirmed P. vivax were randomized (2:1) to tafenoquine 400 mg once daily for 3 days or 2500 mg total dose chloroquine phosphate (1500 mg chloroquine base) given over 3 days plus primaquine 15 mg daily for 14 days. Patients were followed to day 120. RESULTS: Day 28 adequate clinical response rate in the per-protocol population was 93% (40/43) (90%CI 83-98%) with tafenoquine, and 100% (22/22) (90%CI 87-100%) with chloroquine/primaquine. Day 120 relapse prevention was 100% (35/35) with tafenoquine (90%CI 92-100%), and 95% (19/20) (90%CI 78-100%) with chloroquine/primaquine. Mean (SD) parasite, gametocyte and fever clearance times with tafenoquine were 82.5 h (32.3), 49.1 h (33.0), and 41.1 h (31.4) versus 40.0 h (15.7), 22.7 h (16.4), and 24.7 h (17.7) with chloroquine/primaquine, respectively. Peak methemoglobin was 1.4-25.6% (median 7.4%, mean 9.1%) in the tafenoquine arm, and 0.5-5.9% (median 1.5%, mean 1.9%) in the chloroquine/primaquine arm. There were no clinical symptoms of methemoglobinemia in any patient. DISCUSSION: Although there was no difference in efficacy in this study, the slow rate of parasite, gametocyte and fever clearance indicates that tafenoquine should not be used as monotherapy for radical cure of P. vivax malaria. Also, monotherapy increases the potential risk of resistance developing to this long-acting agent. Clinical trials of single-dose tafenoquine 300 mg combined with standard 3-day chloroquine or artemisinin-based combination therapy are ongoing. TRIAL REGISTRATION: Clinicaltrials.gov NCT01290601.


Subject(s)
Aminoquinolines/therapeutic use , Malaria, Vivax/drug therapy , Adult , Aminoquinolines/blood , Aminoquinolines/pharmacology , Animals , Dose-Response Relationship, Drug , Double-Blind Method , Female , Fever/complications , Humans , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Male , Parasites/drug effects , Plasmodium vivax , Treatment Outcome , Young Adult
19.
Malar J ; 16(1): 228, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28558712

ABSTRACT

BACKGROUND: Relapse infections resulting from the activation hypnozoites produced by Plasmodium vivax and Plasmodium ovale represent an important obstacle to the successful control of these species. A single licensed drug, primaquine is available to eliminate these liver dormant forms. To date, investigations of vivax relapse infections have been few in number. RESULTS: Genotyping, based on polymorphic regions of two genes (Pvmsp1F3 and Pvcsp) and four microsatellite markers (MS3.27, MS3.502, MS6 and MS8), of 12 paired admission and relapse samples from P. vivax-infected patients were treated with primaquine, revealed that in eight of the parasite populations in the admission and relapse samples were homologous, and heterologous in the remaining four patients. The patients' CYP2D6 genotypes did not suggest that any were poor metabolisers of primaquine. Parasitaemia tended to be higher in the heterologous as compared to the homologous relapse episodes as was the IgG3 response. For the twelve pro- and anti-inflammatory cytokine levels measured for all samples, only those of IL-6 and IL-10 tended to be higher in patients with heterologous as compared to homologous relapses in both admission and relapse episodes. CONCLUSIONS: The data from this limited number of patients with confirmed relapse episodes mirror previous observations of a significant proportion of heterologous parasites in relapses of P. vivax infections in Thailand. Failure of the primaquine treatment that the patients received is unlikely to be due to poor drug metabolism, and could indicate the presence of P. vivax populations in Thailand with poor susceptibility to 8-aminoquinolines.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance , Malaria, Vivax/parasitology , Plasmodium vivax/physiology , Primaquine/therapeutic use , Adolescent , Adult , Cohort Studies , Follow-Up Studies , Genotype , Humans , Middle Aged , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Recurrence , Thailand , Young Adult
20.
Malar J ; 15(1): 403, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27515948

ABSTRACT

BACKGROUND: Galectin-9 (Gal-9) is a ß-galactoside-binding lectin that interacts with sugar moieties on glycoproteins and glycolipids of cells and pathogens. Gal-9 is known as an immune modulator that induces cell death via interaction with T cell immunoglobulin and mucin domain-3 (Tim3), a co-inhibitory receptor, and it inhibits production of several pro-inflammatory cytokines (TNF, IL-6 and IL-1α) and enhances production of IL-10. To understand the immune pathology of malaria, the Gal-9 in plasma was measured. METHODS: Plasma samples and clinical parameters were obtained from 50 acute malaria cases (nine severe and 41 uncomplicated cases) from Thailand at three time points: day 0, day 7 and day 28. Gal-9 levels were determined by ELISA. A total of 38 species of cytokines and chemokines were measured using a BioPlex assay. RESULTS: Gal-9 levels were higher at day 0 compared to day 7 and day 28 (P < 0.0001). Gal-9 levels were also higher in severe malaria (SM) cases compared to uncomplicated (UM) cases at day 0 and day 7 (923 vs 617 pg/mL; P = 0.03, and 659 vs 348 pg/mL; P = 0.02 respectively). Median Gal-9 levels were higher in patients with blood urea nitrogen to creatinine ratio (BUN/creatinine) ≥20 (mg/dL) than in patients with BUN/creatinine <20 (mg/dL) at day 0 (817.3 vs 576.2 pg/mL, P = 0.007). Gal-9 was inversely significantly correlated with chloride levels in both SM and UM cases (r s = -0.73 and r s = -0.46, respectively). In both UM and SM cases, Gal-9 was significantly associated with pro- and anti-inflammatory cytokines and chemokines such as TNF, IL-6, IFN-α2, IFN-γ, IL-1Ra and IL-10. These correlations were observed at day 0 but disappeared at day 28. CONCLUSIONS: Gal-9 is released during acute malaria, and reflects its severity. This elevation of Gal-9 in acute malaria infection raises the possibility of its role in termination of the immune response by binding to Tim-3, a receptor of Gal-9.


Subject(s)
Galectins/blood , Malaria/pathology , Plasma/chemistry , Adolescent , Adult , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Thailand , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...