Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Article in English | MEDLINE | ID: mdl-30919510

ABSTRACT

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/metabolism , Consensus , Humans , Protons
2.
PLoS One ; 11(5): e0155925, 2016.
Article in English | MEDLINE | ID: mdl-27227746

ABSTRACT

In this study, we evaluated the dependence of saturation pulse length on APT imaging of diffuse gliomas using a parallel transmission-based technique. Twenty-two patients with diffuse gliomas (9 low-grade gliomas, LGGs, and 13 high-grade gliomas, HGGs) were included in the study. APT imaging was conducted at 3T with a 2-channel parallel transmission scheme using three different saturation pulse lengths (0.5 s, 1.0 s, 2.0 s). The 2D fast spin-echo sequence was used for imaging. Z-spectrum was obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm). A point-by-point B0 correction was performed with a B0 map. Magnetization transfer ratio (MTRasym) and ΔMTRasym (contrast between tumor and normal white matter) at 3.5 ppm were compared among different saturation lengths. A significant increase in MTRasym (3.5 ppm) of HGG was found when the length of saturation pulse became longer (3.09 ± 0.54% at 0.5 s, 3.83 ± 0.67% at 1 s, 4.12 ± 0.97% at 2 s), but MTRasym (3.5 ppm) was not different among the saturation lengths in LGG. ΔMTRasym (3.5 ppm) increased with the length of saturation pulse in both LGG (0.48 ± 0.56% at 0.5 s, 1.28 ± 0.56% at 1 s, 1.88 ± 0.56% at 2 s and HGG (1.72 ± 0.54% at 0.5 s, 2.90 ± 0.49% at 1 s, 3.83 ± 0.88% at 2 s). In both LGG and HGG, APT-weighted contrast was enhanced with the use of longer saturation pulses.


Subject(s)
Amides/metabolism , Brain Neoplasms/pathology , Brain/pathology , Glioma/pathology , Magnetic Resonance Imaging/instrumentation , Protons , Adult , Brain/diagnostic imaging , Brain/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Female , Glioma/diagnostic imaging , Glioma/metabolism , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged
3.
J Magn Reson Imaging ; 42(5): 1346-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25828573

ABSTRACT

PURPOSE: To evaluate the reproducibility of amide proton transfer (APT) imaging of brain tumors using a parallel transmission-based technique. MATERIALS AND METHODS: Thirteen patients with brain tumors (four low-grade gliomas, three glioblastoma multiforme, five meningiomas, and one malignant lymphoma) were included in the study. APT imaging was conducted at 3T using a 2-channel parallel transmission scheme with a saturation time of 2 seconds and B1 amplitude of 2 µT. A 2D fast spin-echo sequence with driven-equilibrium refocusing was used for imaging. Z-spectra were obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm). A point-by-point B0 correction was performed with a B0 map. A scan-rescan reproducibility test was performed in two sessions on separate days for each patient. The interval between the two sessions was 4.8 ± 3.5 days. Regions-of-interest (ROIs) were placed to include the whole tumor for each case. A mean and 90-percentile value of APT signal for the whole tumor histogram was calculated for each session. The between-session and within-session reproducibility was evaluated using linear regression analysis, intraclass correlation coefficient (ICC), and a Bland-Altman plot. RESULTS: The mean and 90-percentile values of the APT signal for whole tumor ROI showed excellent agreements between the two sessions, with R(2) of 0.91 and 0.96 in the linear regression analysis and ICC of 0.95 and 0.97, respectively. CONCLUSION: Parallel transmission-based APT imaging of brain tumors showed good reproducibility.


Subject(s)
Brain Neoplasms/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Amides , Brain/pathology , Female , Humans , Male , Middle Aged , Protons , Reproducibility of Results , Sensitivity and Specificity
4.
Radiology ; 270(3): 658-79, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24568703

ABSTRACT

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.


Subject(s)
Biomarkers/metabolism , Central Nervous System Diseases/diagnosis , Magnetic Resonance Spectroscopy/methods , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...