Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38652052

ABSTRACT

Supercapacitors offer notable properties as energy storage devices, providing high power density and fast charging and discharging while maintaining a long cycling lifetime. Although poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) has become a gold standard among organic electronics materials, researchers are still investigating ways to further improve its capacitive characteristics. In this work, we introduced Nafion as an alternative polymeric counterion to PSS to form highly capacitive PEDOT/Nafion; its advantageous supercapacitive properties were further improved by treatment with either dimethyl sulfoxide or ethylene glycol. Accordingly, electrochemical characterization of PEDOT/Nafion films revealed their high areal capacitance (22 mF cm-2 at 10 mV/s) and low charge transfer resistance (∼380 Ω), together with excellent volumetric capacitance (74 F cm-3), Coulombic efficiency (99%), and an energy density of 23.1 ± 1.5 mWh cm-3 at a power density of 0.5 W cm-3, resulting from a more effective ion diffusion inside the conductive film, as confirmed by the results of spectroscopic studies. A proof-of-concept symmetric supercapacitor based on PEDOT/Nafion was characterized with a specific capacitance of approximately 15.7 F g-1 and impressive long-term stability (Coulombic efficiency ∼99% and capacitance ∼98.7% after 1000 charging/discharging cycles), overperforming the device based on PEDOT/PSS.

2.
Sci Technol Adv Mater ; 25(1): 2338786, 2024.
Article in English | MEDLINE | ID: mdl-38680949

ABSTRACT

Electrochemical grafting of organic molecules to metal surfaces has been well-known as an efficient tool enabling tailored modification of surface at the nanoscale. Among many compounds with the ability to undergo the process of electrografting, iodonium salts belong to less frequently used, especially when compared with the most popular diazonium salts. Meanwhile, due to their increased stability, iodonium salts may be used in situations where the use of diazonium salts is constrained. The aim of this study was to examine the effect of the electrochemical reduction of iodonium salts on the physicochemical properties of Pt electrodes, and the possibility to form pro-adhesive layers facilitating further functionalization purposes. Consequently, we have selected four commercially available iodonium salts (diphenyliodonium chloride, bis(4-tertbutylphenyl)iodonium hexafluorophosphate, (4-nitrophenyl)(2,4,6-trimethylphenyl)iodonium triflate, bis(4-methylphenyl)iodonium hexafluorophosphate), and attached them to the surface of Pt electrodes by means of an electrochemical reduction process. As-formed layers were then extensively characterized in terms of wettability, roughness and charge transfer properties, and used as pro-adhesive coatings prior to the deposition of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS. Due to the increase in hydrophilicity and roughness, modified electrodes increased the stability of PEDOT:PSS coating while maintaining its high capacitance.


Adhesion and charge transfer between PEDOT:PSS and the surface of the electrode are significantly improved by a simple electrode modification strategy using the electrochemical grafting of commercially available iodonium salts.

3.
Biomater Adv ; 161: 213867, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38669824

ABSTRACT

Graphene and graphene oxide (GO), due to their unique chemical and physical properties, possess biochemical characteristics that can trigger intercellular signals promoting tissue regeneration. Clinical applications of thin GO-derived sheets have inspired the development of various tissue regeneration and repair approaches. In this study, we demonstrate that ultrathin sheets of plasma-functionalized and reduced GO, with the oxygen content ranging from 3.2 % to 22 % and the nitrogen content from 0 % to 8.3 %, retain their essential mechanical and molecular integrity, and exhibit robust potential for regenerating bone tissue and blood vessels across multiple cellular and animal models. Initially, we observed the growth of blood vessels and bone tissue in vitro using these functionalized GO sheets on human adipose-derived mesenchymal stem cells and umbilical vein endothelial cells. Remarkably, our study indicates a 2.5-fold increase in mineralization and two-fold increase in tubule formation even in media lacking osteogenic and angiogenic supplements. Subsequently, we observed the initiation, conduction, and formation of bone and blood vessels in a rat tibial osteotomy model, evident from a marked 4-fold increase in the volume of low radio-opacity bone tissue and a significant elevation in connectivity density, all without the use of stem cells or growth factors. Finally, we validated these findings in a mouse critical-size calvarial defect model (33 % higher healing rate) and a rat skin lesion model (up to 2.5-fold increase in the number of blood vessels, and 35 % increase in blood vessels diameter). This study elucidates the pro-osteogenic and pro-angiogenic properties of both pristine and plasma-treated GO ultrathin films. These properties suggest their significant potential for clinical applications, and as valuable biomaterials for investigating fundamental aspects of bone and blood vessel regeneration.

4.
J Infect Public Health ; 17(2): 189-203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113816

ABSTRACT

Host impaired immunity and pathogens adhesion factors are the key elements in analyzing medical implant-associated infections (MIAI). The infection chances are further influenced by surface properties of implants. This review addresses the medical implant-associated pathogens and summarizes the etiology, pathology, and host-impaired immunity in MIAI. Several bacterial and fungal pathogens have been isolated from MIAI; together, they form cross-kingdom species biofilms and support each other in different ways. The adhesion factors initiate the pathogen's adherence on the implant's surface; however, implant-induced impaired immunity promotes the pathogen's colonization and biofilm formation. Depending on the implant's surface properties, immune cell functions get slow or get exaggerated and cause immunity-induced secondary complications resulting in resistant depression and immuno-incompetent fibro-inflammatory zone that compromise implant's performance. Such consequences lead to the unavoidable and straightforward conclusion for the downstream transformation of new ideas, such as the development of multifunctional implant coatings.


Subject(s)
Bacterial Adhesion , Prosthesis-Related Infections , Humans , Bacterial Adhesion/physiology , Biofilms , Surface Properties , Bacteria
5.
Microb Biotechnol ; 16(11): 2053-2071, 2023 11.
Article in English | MEDLINE | ID: mdl-37804207

ABSTRACT

Iron is an essential element for all eukaryote organisms because of its redox properties, which are important for many biological processes such as DNA synthesis, mitochondrial respiration, oxygen transport, lipid, and carbon metabolism. For this reason, living organisms have developed different strategies and mechanisms to optimally regulate iron acquisition, transport, storage, and uptake in different environmental responses. Moreover, iron plays an essential role during microbial infections. Saccharomyces cerevisiae has been of key importance for decrypting iron homeostasis and regulation mechanisms in eukaryotes. Specifically, the transcription factors Aft1/Aft2 and Yap5 regulate the expression of genes to control iron metabolism in response to its deficiency or excess, adapting to the cell's iron requirements and its availability in the environment. We also review which iron-related virulence factors have the most common fungal human pathogens (Aspergillus fumigatus, Cryptococcus neoformans, and Candida albicans). These factors are essential for adaptation in different host niches during pathogenesis, including different fungal-specific iron-uptake mechanisms. While being necessary for virulence, they provide hope for developing novel antifungal treatments, which are currently scarce and usually toxic for patients. In this review, we provide a compilation of the current knowledge about the metabolic response to iron deficiency and excess in fungi.


Subject(s)
Iron Deficiencies , Saccharomyces cerevisiae Proteins , Humans , Transcription Factors/metabolism , Iron/metabolism , Saccharomyces cerevisiae/genetics , Biological Transport , Gene Expression Regulation, Fungal , Trans-Activators/genetics , Saccharomyces cerevisiae Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism
6.
Sci Rep ; 13(1): 18365, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884622

ABSTRACT

The design of biomaterials able to facilitate cell adhesion is critical in the field of tissue engineering. Precise control of surface chemistry at the material/tissue interface plays a major role in enhancing the interactions between a biomaterial and living cells. Bio-integration is particularly important in case of various electrotherapies, since a close contact between tissue and electrode's surface facilitates treatment. A promising approach towards surface biofunctionalization involves the electrografting of diazonium salts followed by the modification of organic layer with pro-adhesive polypeptides. This study focuses on the modification of platinum electrodes with a 4-nitrobenzenediazonium layer, which is then converted to the aminobenzene moiety. The electrodes are further biofunctionalized with polypeptides (polylysine and polylysine/laminin) to enhance cell adhesion. This study also explores the differences between physical and chemical coupling of selected polypeptides to modulate pro-adhesive nature of Pt electrodes with respect to human neuroblastoma SH-SY5Y cells and U87 astrocytes. Our results demonstrate the significant enhancement in cell adhesion for biofunctionalized electrodes, with more amplified adhesion noted for covalently coupled polypeptides. The implications of this research are crucial for the development of more effective and functional biomaterials, particularly biomedical electrodes, which have the potential to advance the field of bioelectronics and improve patients' outcomes.


Subject(s)
Neuroblastoma , Polylysine , Humans , Adhesives , Biocompatible Materials , Peptides , Cell Adhesion , Surface Properties
7.
Int J Mol Sci ; 24(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686012

ABSTRACT

The deterioration of the performance of polysaccharide-based films over time, particularly their hydrophilicity and mechanical properties, is one of the main problems limiting their applications in the packaging industry. In the present study, we proposed to improve the performance of chitosan-based films through the use of: (1) nanocellulose as an additive to reduce their hydrophilic nature; (2) bio-based plasticizer to improve their mechanical properties; and (3) chestnut extract as an antimicrobial agent. To evaluate their stability over time, the properties of as-formed films (mechanical, hydrophilic, barrier and antibacterial) were studied immediately after preparation and after 7, 14 and 30 days. In addition, the morphological properties of the films were characterized by scanning electron microscopy, their structure by FTIR, their transparency by UV-Vis and their thermal properties by TGA. The films showed a hydrophobic character (contact angle above 100°), barrier properties to oxygen and carbon dioxide and strong antibacterial activity against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Moreover, the use of nanofillers did not deteriorate the elongation at breaks or the thermal properties of the films, but their addition reduced the transparency. In addition, the results showed that the greatest change in film properties occurred within the first 7 days after sample preparation, after which the properties were found to stabilize.


Subject(s)
Chitosan , Nanocomposites , Nanofibers , Plasticizers , Cellulose , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology
8.
ACS Appl Mater Interfaces ; 15(39): 45701-45712, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37737728

ABSTRACT

Electrical stimulation has been used successfully for several decades for the treatment of neurodegenerative disorders, including motor disorders, pain, and psychiatric disorders. These technologies typically rely on the modulation of neural activity through the focused delivery of electrical pulses. Recent research, however, has shown that electrically triggered neuromodulation can be further enhanced when coupled with optical stimulation, an approach that can benefit from the development of novel electrode materials that combine transparency with excellent electrochemical and biological performance. In this study, we describe an electrochemically modified, nanostructured indium tin oxide/poly(ethylene terephthalate) (ITO/PET) surface as a flexible, transparent, and cytocompatible electrode material. Electrochemical oxidation and reduction of ITO/PET electrodes in the presence of an ionic liquid based on d-glucopyranoside and bistriflamide units were performed, and the electrochemical behavior, conductivity, capacitance, charge transport processes, surface morphology, optical properties, and cytocompatibility were assessed in vitro. It has been shown that under selected conditions, electrochemically modified ITO/PET films remained transparent and highly conductive and were able to enhance neural cell survival and neurite outgrowth. Consequently, electrochemical modification of ITO/PET electrodes in the presence of an ionic liquid is introduced as an effective approach for tailoring the properties of ITO for advanced bio-optoelectronic applications.


Subject(s)
Ionic Liquids , Nanostructures , Humans , Oxidation-Reduction , Tin Compounds/chemistry
9.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628758

ABSTRACT

In the pursuit of designing a reusable catalyst with enhanced catalytic activity, recent studies indicate that electrochemical grafting of diazonium salts is an efficient method of forming heterogeneous catalysts. The aim of this review is to assess the industrial applicability of diazonium-based catalysts with particular emphasis on their mechanical, chemical, and thermal stability. To this end, different approaches to catalyst production via diazonium salt chemistry have been compared, including the immobilization of catalysts by a chemical reaction with a diazonium moiety, the direct use of diazonium salts and nanoparticles as catalysts, the use of diazonium layers to modulate wettability of a carrier, as well as the possibility of transforming the catalyst into the corresponding diazonium salt. After providing descriptions of the most suitable carriers, the most common deactivation routes of catalysts have been discussed. Although diazonium-based catalysts are expected to exhibit good stability owing to the covalent bond created between a catalyst and a post-diazonium layer, this review indicates the paucity of studies that experimentally verify this hypothesis. Therefore, use of diazonium salts appears a promising approach in catalysts formation if more research efforts can focus on assessing their stability and long-term catalytic performance.

10.
Sci Rep ; 13(1): 11530, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460643

ABSTRACT

Due to the growing demand for robust and environmentally friendly antimicrobial packaging materials, biopolymers have recently become extensively investigated. Although biodegradable biopolymers usually lack mechanical properties, which makes it inevitable to blend them with plasticizers. The purpose of this study was to investigate plasticization efficiency of bio-based plasticizers introduced into sodium alginate compositions containing chestnut extract and their effect on selected film properties, including primarily mechanical and antibacterial properties. The films were prepared by the casting method and sodium alginate was cross-linked with calcium chloride. Six different plasticizers, including three commercially available ones (glycerol, epoxidized soybean oil and palm oil) and three synthesized plasticizers that are mixtures of bio-based plasticizers, were used to compare their influence on the film properties. Interactions between the polymer matrix and the plasticizers were investigated using Fourier transform infrared spectroscopy. The morphological characteristics of the films were characterized by scanning electron microscopy. Thermal properties, tensile strength, elongation at break, hydrophilic, and barrier properties of the obtained films were also determined. To confirm the obtaining of active films through the use of chestnut extract and to study the effect of the proposed plasticizers on the antibacterial activity of the extract, the obtained films were tested against bacteria cultures. The final results showed that all of the obtained films exhibit a hydrophilic character and high barrier effect to oxygen, carbon dioxide and water vapor. In addition, sodium alginate films prepared with chestnut extract and the plasticizer proposed by us, showed better mechanical and antimicrobial properties than the films obtained with chestnut extract and the commercially available plasticizers.


Subject(s)
Anti-Infective Agents , Plasticizers , Plasticizers/chemistry , Alginates/chemistry , Polymers , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Tensile Strength
11.
Bioelectrochemistry ; 153: 108484, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37302335

ABSTRACT

The continuous progression in the field of electrotherapies implies the development of multifunctional materials exhibiting excellent electrochemical performance and biocompatibility, promoting cell adhesion, and possessing antibacterial properties. Since the conditions favouring the adhesion of mammalian cells are similar to conditions favouring the adhesion of bacterial cells, it is necessary to engineer the surface to exhibit selective toxicity, i.e., to kill or inhibit the growth of bacteria without damaging mammalian tissues. The aim of this paper is to introduce a surface modification approach based on a subsequent deposition of silver and gold particles on the surface of a conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting PEDOT-Au/Ag surface is found to possess optimal wettability, roughness, and surface features making it an excellent platform for cell adhesion. By depositing Ag particles on PEDOT surface decorated with Au particles, it is possible to reduce toxic effects of Ag particles, while maintaining their antibacterial activity. Besides, electroactive and capacitive properties of PEDOT-Au/Ag account for its applicability in various electroceutical therapies.


Subject(s)
Gold , Silver , Animals , Silver/pharmacology , Silver/chemistry , Gold/chemistry , Polymers/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Anti-Bacterial Agents/pharmacology , Mammals
12.
Bioelectrochemistry ; 152: 108465, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37207477

ABSTRACT

The ability to study and regulate cell behavior at a biomaterial interface requires a strict control over its surface chemistry. Significance of studying cell adhesion in vitro and in vivo has become increasingly important, particularly in the field of tissue engineering and regenerative medicine. A promising surface modification route assumes using organic layers prepared by the method of electrografting of diazonium salts and their further functionalization with biologically active molecules as cell adhesion promoters. This work reports the modification of platinum electrodes with selected diazonium salts and poly-L-lysine to increase the number of sites available for cell adhesion. As-modified electrodes were characterized in terms of their chemical and morphological properties, as well as wettability. In order to monitor the process of cell attachment, biofunctionalized electrodes were used as substrates for culturing human neuroblastoma SH-SY5Y cells. The experiments revealed that cell adhesion is favored on the surface of diazonium-modified and poly-L-lysine coated electrodes, indicating proposed modification route as a valuable strategy enhancing the integration between bioelectronic devices and neural cells.


Subject(s)
Neuroblastoma , Polylysine , Humans , Cell Adhesion , Surface Properties , Salts , Electrodes
13.
J Clin Med ; 12(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37176567

ABSTRACT

Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-ß, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.

14.
J Clin Med ; 12(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37048725

ABSTRACT

The genetic variants of HLAs (human leukocyte antigens) play a crucial role in the virus-host interaction and pathology of COVID-19. The genetic variants of HLAs not only influence T cell immune responses but also B cell immune responses by presenting a variety of peptide fragments of invading pathogens. Peptide cocktail vaccines produced by using various conserved HLA-A2 epitopes provoke substantial specific CD8+ T cell responses in experimental animals. The HLA profiles vary among individuals and trigger different T cell-mediated immune responses in COVID-19 infections. Those with HLA-C*01 and HLA-B*44 are highly susceptible to the disease. However, HLA-A*02:01, HLA-DR*03:01, and HLA-Cw*15:02 alleles show resistance to SARS infection. Understanding the genetic association of HLA with COVID-19 susceptibility and severity is important because it can help in studying the transmission of COVID-19 and its physiopathogenesis. The HLA-C*01 and B*44 allele pathways can be studied to gain insight into disease transmission and physiopathogenesis. Therefore, integrating HLA testing is suggested in the ongoing pandemic, which will help in the rapid identification of highly susceptible populations worldwide and possibly acclimate vaccine development. Therefore, understanding the correlation between HLA and SARS-CoV-2 is critical in opening new insights into COVID-19 therapeutics, based on previous studies conducted.

15.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674709

ABSTRACT

Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 µm and 4.75 µm. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion.


Subject(s)
Endothelial Cells , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods
16.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36675046

ABSTRACT

Phages are highly ubiquitous biological agents, which means they are ideal tools for molecular biology and recombinant DNA technology. The development of a phage display technology was a turning point in the design of phage-based vaccines. Phages are now recognized as universal adjuvant-free nanovaccine platforms. Phages are well-suited for vaccine design owing to their high stability in harsh conditions and simple and inexpensive large-scale production. The aim of this review is to summarize the overall breadth of the antiviral therapeutic perspective of phages contributing to the development of phage-based vaccines for COVID-19. We show that phage vaccines induce a strong and specific humoral response by targeted phage particles carrying the epitopes of SARS-CoV-2. Further, the engineering of the T4 bacteriophage by CRISPR (clustered regularly interspaced short palindromic repeats) presents phage vaccines as a valuable platform with potential capabilities of genetic plasticity, intrinsic immunogenicity, and stability.


Subject(s)
Bacteriophages , COVID-19 , Vaccines , Humans , Bacteriophages/genetics , COVID-19 Vaccines/genetics , COVID-19/therapy , COVID-19/genetics , SARS-CoV-2/genetics , Bacteriophage T4/genetics , Clustered Regularly Interspaced Short Palindromic Repeats
17.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076921

ABSTRACT

Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.


Subject(s)
Anti-Infective Agents, Local , Bacterial Infections , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Bacterial Infections/drug therapy , Bacterial Infections/prevention & control , Biofilms , Fungi , Humans
18.
Materials (Basel) ; 15(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591570

ABSTRACT

One of the major objectives of food industry is to develop low-cost biodegradable food packaging films with optimal physicochemical properties, allowing for their large-scale production and providing a variety of applications. To meet the expectations of food industry, we have fabricated a series of solution-cast films based on common biodegradable polysaccharides (starch, chitosan and alginate) to be used in food packaging applications. Selected biopolymers were modified by the addition of glycerol and oxidized sucrose (starch), glycerol (chitosan), and glycerol and calcium chloride (alginate), as well as being used to form blends (starch/chitosan and starch/alginate, respectively). A chestnut extract was used to provide antibacterial properties to the preformed materials. The results of our studies showed that each modification reduced the hydrophilic nature of the polymers, making them more suitable for food packaging applications. In addition, all films exhibited much higher barrier properties to oxygen and carbon dioxide than commercially available films, such as polylactic acid, as well as exhibiting antimicrobial properties against model Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis, respectively), as well as yeast (Candida albicans).

19.
Bioelectrochemistry ; 146: 108127, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35397436

ABSTRACT

Recent studies willingly agree that conducting polymers (CPs) are attractive materials for biomedical engineering purposes, mainly because of their unique physicochemical characteristics combining electrical conductivity and high biocompatibility. Nevertheless, the applicability of CPs is restricted by their limited stability under physiological conditions, associated with a decrease in electrical conductivity upon dedoping. Accordingly, modifying chemical structure of CPs to exhibit a self-doping effect seems to be an appealing approach aimed to enhance their functionality. The aim of this review is to provide a current state-of-the-art in the research concerning self-doped CPs, particularly those with potential biomedical applications. After presenting a library of available structure modifications, we describe their physicochemical characteristics, focusing on achievable conductivities, electrochemical, optical and mechanical behaviour, as well as biological properties. To highlight high applicability of self-doped CPs in biomedical engineering, we elaborate on biomedical areas benefiting most from using this type of conducting materials.


Subject(s)
Biomedical Engineering , Polymers , Bioengineering , Electric Conductivity , Polymers/chemistry
20.
Bioelectrochemistry ; 144: 108030, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34896782

ABSTRACT

Current trends in the field of neural tissue engineering include the design of advanced biomaterials combining excellent electrochemical performance with versatile biological characteristics. The purpose of this work was to develop an antibacterial and neuroprotective coating based on a conducting polymer - poly(3,4-ethylenedioxypyrrole) (PEDOP), loaded with an antibiotic agent - tetracycline (Tc). Employing an electrochemical technique to immobilize Tc within a growing polymer matrix allowed to fabricate robust PEDOP/Tc coatings with a high charge storage capacity (63.65 ± 6.05 mC/cm2), drug release efficiency (629.4 µg/cm2 ± 62.7 µg/cm2), and low charge transfer resistance (2.4 ± 0.1 kΩ), able to deliver a stable electrical signal. PEDOP/Tc were found to exhibit strong antimicrobial effects against Gram-negative bacteria Escherichia coli, expressed through negligible adhesion, reduction in viability, and a characteristic elongation of bacterial cells. Cytocompatibility and neuroprotective effects were evaluated using a rat neuroblastoma B35 cell line, and were analyzed using MTT, cell cycle, and Annexin-V apoptosis assays. The presence of Tc was found to enhance neural cell viability and neurite outgrowth. The results confirmed that PEDOP/Tc can serve as an efficient neural electrode coating able to enhance charge transfer, as well as to exhibit bifunctional biological characteristics, different for eukaryotic and prokaryotic cells.


Subject(s)
Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...