Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Int. microbiol ; 26(3): 601-610, Ene-Agos, 2023. tab, graf
Article in English | IBECS | ID: ibc-223985

ABSTRACT

Background: Diabetes mellitus type 2 is a common disease that poses a challenge to the healthcare system. The disease is very often diagnosed late. A better understanding of the relationship between the gut microbiome and type 2 diabetes can support early detection and form an approach for therapies. Microbiome analysis offers a potential opportunity to find markers for this disease. Next-generation sequencing methods can be used to identify the bacteria present in the stool sample and to generate a microbiome profile through an analysis pipeline. Statistical analysis, e.g., using Student’s t-test, allows the identification of significant differences. The investigations are not only focused on single bacteria, but on the determination of a comprehensive profile. Also, the consideration of the functional microbiome is included in the analyses. The dataset is not from a clinical survey, but very extensive. Results: By examining 946 microbiome profiles of diabetes mellitus type 2 sufferers (272) and healthy control persons (674), a large number of significant genera (25) are revealed. It is possible to identify a large profile for type 2 diabetes disease. Furthermore, it is shown that the diversity of bacteria per taxonomic level in the group of persons with diabetes mellitus type 2 is significantly reduced compared to a healthy control group. In addition, six pathways are determined to be significant for type 2 diabetes describing the fermentation to butyrate. These parameters tend to have high potential for disease detection. Conclusions: With this investigation of the gut microbiome of persons with diabetes type 2 disease, we present significant bacteria and pathways characteristic of this disease.(AU)


Subject(s)
Humans , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Butyrates , Microbiota , Data Interpretation, Statistical , Microbiology , Microbiological Techniques
2.
Int Microbiol ; 26(3): 601-610, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36780038

ABSTRACT

BACKGROUND: Diabetes mellitus type 2 is a common disease that poses a challenge to the healthcare system. The disease is very often diagnosed late. A better understanding of the relationship between the gut microbiome and type 2 diabetes can support early detection and form an approach for therapies. Microbiome analysis offers a potential opportunity to find markers for this disease. Next-generation sequencing methods can be used to identify the bacteria present in the stool sample and to generate a microbiome profile through an analysis pipeline. Statistical analysis, e.g., using Student's t-test, allows the identification of significant differences. The investigations are not only focused on single bacteria, but on the determination of a comprehensive profile. Also, the consideration of the functional microbiome is included in the analyses. The dataset is not from a clinical survey, but very extensive. RESULTS: By examining 946 microbiome profiles of diabetes mellitus type 2 sufferers (272) and healthy control persons (674), a large number of significant genera (25) are revealed. It is possible to identify a large profile for type 2 diabetes disease. Furthermore, it is shown that the diversity of bacteria per taxonomic level in the group of persons with diabetes mellitus type 2 is significantly reduced compared to a healthy control group. In addition, six pathways are determined to be significant for type 2 diabetes describing the fermentation to butyrate. These parameters tend to have high potential for disease detection. CONCLUSIONS: With this investigation of the gut microbiome of persons with diabetes type 2 disease, we present significant bacteria and pathways characteristic of this disease.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Humans , Butyrates/metabolism , Bacteria
3.
F1000Res ; 72018.
Article in English | MEDLINE | ID: mdl-30026930

ABSTRACT

Next-Generation Sequencing (NGS) technologies are expected to play a crucial role in the surveillance of infectious diseases, with their unprecedented capabilities for the characterisation of genetic information underlying the virulence and antimicrobial resistance (AMR) properties of microorganisms.  In the implementation of any novel technology for regulatory purposes, important considerations such as harmonisation, validation and quality assurance need to be addressed.  NGS technologies pose unique challenges in these regards, in part due to their reliance on bioinformatics for the processing and proper interpretation of the data produced.  Well-designed benchmark resources are thus needed to evaluate, validate and ensure continued quality control over the bioinformatics component of the process.  This concept was explored as part of a workshop on "Next-generation sequencing technologies and antimicrobial resistance" held October 4-5 2017.   Challenges involved in the development of such a benchmark resource, with a specific focus on identifying the molecular determinants of AMR, were identified. For each of the challenges, sets of unsolved questions that will need to be tackled for them to be properly addressed were compiled. These take into consideration the requirement for monitoring of AMR bacteria in humans, animals, food and the environment, which is aligned with the principles of a "One Health" approach.


Subject(s)
Anti-Bacterial Agents/pharmacology , Computational Biology/methods , Drug Resistance, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Benchmarking
SELECTION OF CITATIONS
SEARCH DETAIL
...