Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743140

ABSTRACT

(1) Background: With new potential drug targets emerging, combination therapies appear attractive to treat non-alcoholic steatohepatitis (NASH) and fibrosis. Chemokine receptor CCR2/5 antagonists can improve fibrosis by reducing monocyte infiltration and altering hepatic macrophage subsets. Fibroblast growth factor 21 (FGF21) may improve NASH by modulating lipid and glucose metabolism. We compared effects of single drug to combination treatment as therapeutic strategies against NASH. (2) Methods: We analyzed serum samples and liver biopsies from 85 nonalcoholic fatty liver disease (NAFLD) patients. A CCR2/5 inhibitor (BMS-687681-02-020) and a pegylated FGF21 agonist (BMS-986171) were tested in male C57BL/6J mice subjected to dietary models of NASH and fibrosis (choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) up to 12 weeks; short- (2w) or long-term (6w) treatment). (3) Results: In NAFLD patients, chemokine CCL2 and FGF21 serum levels correlated with inflammatory serum markers, only CCL2 was significantly associated with advanced liver fibrosis. In rodent NASH, CCR2/5 inhibition significantly reduced circulating Ly6C+ monocytes and hepatic monocyte-derived macrophages, alongside reduced hepatic inflammation and fibrosis. FGF21 agonism decreased body weight, liver triglycerides and histological NASH activity. Combination treatment reflected aspects of both compounds upon short- and long-term application, thereby amplifying beneficial effects on all aspects of steatohepatitis and fibrosis. (4) Conclusions: CCR2/5 inhibition blocks hepatic infiltration of inflammatory monocytes, FGF21 agonism improves obesity-related metabolic disorders. Combined therapy ameliorates steatohepatitis and fibrosis more potently than single drug treatment in rodent NASH, corroborating the therapeutic potential of combining these two approaches in NASH patients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Disease Models, Animal , Fibroblast Growth Factors , Fibrosis , Humans , Liver/metabolism , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Receptors, CCR2/metabolism , Receptors, CCR5/metabolism
2.
J Med Chem ; 65(13): 8948-8960, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35704802

ABSTRACT

While several farnesoid X receptor (FXR) agonists under clinical investigation for the treatment of nonalcoholic steatohepatitis (NASH) have shown beneficial effects, adverse effects such as pruritus and elevation of plasma lipids have limited their clinical efficacy and approvability. Herein, we report the discovery and preclinical evaluation of compound 32 (BMS-986339), a nonbile acid FXR agonist with a pharmacologically distinct profile relative to our previously reported agonist BMS-986318. Compound 32 exhibited potent in vitro and in vivo activation of FXR, albeit with a context-dependent profile that resulted in tissue-selective effects in vivo. To our knowledge, this is the first report that demonstrates differential induction of Fgf15 in the liver and ileum by FXR agonists in vivo. Compound 32 demonstrated robust antifibrotic efficacy despite reduced activation of certain genes in the liver, suggesting that the additional pharmacology of BMS-986318 does not further benefit efficacy, possibly presenting an opportunity for reduced adverse effects. Further evaluation in humans is warranted to validate this hypothesis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Receptors, Cytoplasmic and Nuclear
3.
J Med Chem ; 61(3): 681-694, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29316397

ABSTRACT

G protein-coupled receptor 40 (GPR40) has become an attractive target for the treatment of diabetes since it was shown clinically to promote glucose-stimulated insulin secretion. Herein, we report our efforts to develop highly selective and potent GPR40 agonists with a dual mechanism of action, promoting both glucose-dependent insulin and incretin secretion. Employing strategies to increase polarity and the ratio of sp3/sp2 character of the chemotype, we identified BMS-986118 (compound 4), which showed potent and selective GPR40 agonist activity in vitro. In vivo, compound 4 demonstrated insulinotropic efficacy and GLP-1 secretory effects resulting in improved glucose control in acute animal models.


Subject(s)
Drug Discovery , Pyrazoles/pharmacology , Pyrazoles/pharmacokinetics , Receptors, G-Protein-Coupled/agonists , Administration, Oral , Animals , Biological Availability , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Pyrrolidines/chemistry
4.
J Med Chem ; 57(18): 7499-508, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25208139

ABSTRACT

G-protein-coupled receptor 119 (GPR119) is expressed predominantly in pancreatic ß-cells and in enteroendocrine cells in the gastrointestinal tract. GPR119 agonists have been shown to stimulate glucose-dependent insulin release by direct action in the pancreas and to promote secretion of the incretin GLP-1 by action in the gastrointestinal tract. This dual mechanism of action has generated significant interest in the discovery of small molecule GPR119 agonists as a potential new treatment for type 2 diabetes. Herein, we describe the discovery and optimization of a new class of pyridone containing GPR119 agonists. The potent and selective BMS-903452 (42) was efficacious in both acute and chronic in vivo rodent models of diabetes. Dosing of 42 in a single ascending dose study in normal healthy humans showed a dose dependent increase in exposure and a trend toward increased total GLP-1 plasma levels.


Subject(s)
Drug Discovery , Hypoglycemic Agents/pharmacology , Molecular Targeted Therapy , Pyridones/pharmacology , Receptors, G-Protein-Coupled/metabolism , Sulfones/pharmacology , Animals , Clinical Trials as Topic , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drug Design , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Male , Mice , Models, Molecular , Protein Conformation , Pyridones/chemistry , Pyridones/pharmacokinetics , Pyridones/therapeutic use , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/chemistry , Sulfones/chemistry , Sulfones/pharmacokinetics , Sulfones/therapeutic use
5.
Bioorg Med Chem Lett ; 24(11): 2539-45, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24755425

ABSTRACT

Through appropriate medicinal chemistry design tactics and computer-assisted conformational modeling, the initial lead A was evolved into a series of dihydrobenzofuran derivatives 3 as potent GPR119 agonists. This Letter describes the optimization of general structure 3, including the substituent(s) on dihydrobenzofuran, the R(1) attachment on right-hand piperidine nitrogen, and the left-hand piperidine/piperazine and its attachment R(2). The efforts led to the identification of compounds 13c and 24 as potent human GPR119 modulators with favorable metabolic stability, ion channel activity, and PXR profiles.


Subject(s)
Benzofurans/pharmacology , Receptors, G-Protein-Coupled/agonists , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Line , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
6.
Peptides ; 31(7): 1353-60, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20420872

ABSTRACT

We report the identification of potent agonists of the Glucagon-Like Peptide-1 receptor (GLP-1R) via evaluation of two positional scanning libraries and a two-dimensional focused library, synthesized in part on SynPhase Lanterns. These compounds are 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of biphenylalanine (Bip) at the two C-terminal positions. Typical activities of the most potent peptides in this class are in the picomolar range in an in vitro functional assay using human GLP-1 receptor.


Subject(s)
Peptides/chemistry , Receptors, Glucagon/agonists , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Glucagon-Like Peptide-1 Receptor , Humans , Models, Molecular , Molecular Sequence Data , Peptide Library , Peptides/metabolism , Peptides/pharmacology , Structure-Activity Relationship
7.
Peptides ; 31(5): 950-5, 2010 May.
Article in English | MEDLINE | ID: mdl-20138099

ABSTRACT

We report the identification of potent agonists of the Glucagon-Like Peptide-1 Receptor (GLP-1R). These compounds are short, 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of homohomophenylalanine (hhPhe) at the C-terminal position. Typically the functional activity of the more potent peptides in this class is in the low picomolar range in an in vitro cAMP assay, with one example demonstrating excellent in vivo activity in an ob/ob mouse model of diabetes.


Subject(s)
Aminobutyrates/chemistry , Peptides/chemistry , Receptors, Glucagon/agonists , Amino Acid Sequence , Animals , Blood Glucose/drug effects , CHO Cells , Cricetinae , Cricetulus , Glucagon-Like Peptide-1 Receptor , Hyperglycemia/blood , Hyperglycemia/drug therapy , Mice , Molecular Sequence Data , Molecular Structure , Peptides/chemical synthesis , Peptides/pharmacokinetics , Peptides/therapeutic use
8.
J Med Chem ; 52(23): 7788-99, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19702274

ABSTRACT

Glucagon-like peptide 1 (GLP-1) is a 30 or 31 amino acid peptide hormone that contributes to the physiological regulation of glucose homeostasis and food intake. Herein, we report the discovery of a novel class of 11 amino acid GLP-1 receptor agonists. These peptides consist of a structurally optimized 9-mer, which is closely related to the N-terminal 9 amino acids of GLP-1, linked to a substituted C-terminal biphenylalanine (BIP) dipeptide. SAR studies resulted in 11-mer GLP-1R agonists with similar in vitro potency to the native 30-mer. Peptides 21 and 22 acutely reduced plasma glucose excursions and increased plasma insulin concentrations in a mouse model of diabetes. These peptides also showed sustained exposures over several hours in mouse and dog models. The described 11-mer GLP-1 receptor agonists represent a new tool in further understanding GLP-1 receptor pharmacology that may lead to novel antidiabetic agents.


Subject(s)
Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Receptors, Glucagon/agonists , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Dose-Response Relationship, Drug , Glucagon-Like Peptide-1 Receptor , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Male , Mice , Models, Molecular , Molecular Sequence Data , Oligopeptides/chemical synthesis , Oligopeptides/pharmacokinetics , Protein Conformation
9.
Bioorg Med Chem Lett ; 14(6): 1577-80, 2004 Mar 22.
Article in English | MEDLINE | ID: mdl-15006407

ABSTRACT

In a continuing effort to discover novel chemotypes as potent and selective PDE5 inhibitors for the treatment of male erectile dysfunction (ED), we have found that 4-benzylaminoquinoline derivatives are very potent and selective PDE5 inhibitors. Some compounds in this series had PDE5 IC(50)'s as low as 50 pM. While an electron withdrawing group at the C6-position of the quinoline substantially improved PDE5 potency, an ethyl group at the C8-position not only improved the PDE5 potency but also the isozyme selectivity. Substitutents at the C3-position can incorporate a variety of different groups. The synthesis and primary structure-activity relationship of this new series of potent PDE5 inhibitors are described.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/antagonists & inhibitors , Erectile Dysfunction/drug therapy , Phosphodiesterase Inhibitors/pharmacology , Quinolines/pharmacology , 3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5 , Erectile Dysfunction/enzymology , Humans , Male , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/therapeutic use , Quinolines/chemistry , Quinolines/therapeutic use
10.
J Med Chem ; 46(4): 457-60, 2003 Feb 13.
Article in English | MEDLINE | ID: mdl-12570368

ABSTRACT

Novel pyrazolopyridopyridazine derivatives have been prepared as potent and selective PDE5 inhibitors. Compound 6 has been identified as a more potent and selective PDE5 inhibitor than sildenafil (1). It is as efficacious as sildenafil in in vitro and in vivo PDE5 inhibition models, and it is orally bioavailable in rats and dogs. The superior isozyme selectivity of 6 is expected to exert less adverse effects in humans when used for erectile dysfunction treatment.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Pyridazines/chemical synthesis , Administration, Oral , Animals , Biological Availability , Blood Pressure/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 5 , Dogs , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Erectile Dysfunction/drug therapy , Female , Male , Penis/blood supply , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Rabbits , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL