Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 111(2): 689-699, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29385499

ABSTRACT

Corn rootworm remains the key pest of maize in the United States. It is managed largely by Bt corn hybrids, along with soil insecticides and neonicotinoid seed treatments (NSTs), the latter of which are applied to virtually all conventionally (non-Bt) produced maize. Frequently, more than one of these pest-management approaches is employed at the same time. To determine the utility and relative contributions of these various approaches, a meta-analysis was conducted on plant health and pest damage metrics from 15 yr of insecticide efficacy trials conducted on Indiana maize to compare the pest-protection potential of NSTs to that of other insecticides and Bt hybrids. The probability of recovering the insecticide cost associated with each treatment was also calculated when possible. With the exception of early-season plant health (stand counts), in which the NSTs performed better than all other insecticides, the vast majority of insecticides performed similarly in all plant health metrics, including yield. Furthermore, all tested insecticides (including NSTs) reported a high probability (>80%) of recovering treatment costs. Given the similarity in performance and probability of recovering treatment costs, we suggest NSTs be optional for producers, so that they can be incorporated into an insecticide rotation when managing for corn rootworm, the primary Indiana corn pest. This approach could simultaneously reduce costs to growers, lower the likelihood of nontarget effects, and reduce the risk of pests evolving resistance to the neonicotinoid insecticides.


Subject(s)
Coleoptera , Insect Control/economics , Insecticides/economics , Neonicotinoids/economics , Zea mays , Animals , Indiana , Insecticides/administration & dosage , Larva , Neonicotinoids/administration & dosage
3.
Environ Sci Pollut Res Int ; 22(1): 5-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25233913

ABSTRACT

Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.


Subject(s)
Agriculture/trends , Environmental Pollutants/toxicity , Imidazoles/toxicity , Insecticides/toxicity , Nitro Compounds/toxicity , Pyrazoles/toxicity , Agriculture/methods , Animals , Crops, Agricultural/metabolism , Environmental Pollutants/metabolism , Herbivory , Imidazoles/metabolism , Insecta/drug effects , Insecticides/metabolism , Neonicotinoids , Nitro Compounds/metabolism , Pyrazoles/metabolism , Seeds/metabolism
4.
Environ Sci Pollut Res Int ; 22(1): 68-102, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25223353

ABSTRACT

We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section "other invertebrates" review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.


Subject(s)
Environmental Pollutants/toxicity , Insecticides/toxicity , Invertebrates/drug effects , Nicotinic Agonists/toxicity , Pyrazoles/toxicity , Animals , Ecosystem , Pollination , Risk Assessment
5.
Environ Sci Pollut Res Int ; 22(1): 35-67, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25096486

ABSTRACT

Systemic insecticides are applied to plants using a wide variety of methods, ranging from foliar sprays to seed treatments and soil drenches. Neonicotinoids and fipronil are among the most widely used pesticides in the world. Their popularity is largely due to their high toxicity to invertebrates, the ease and flexibility with which they can be applied, their long persistence, and their systemic nature, which ensures that they spread to all parts of the target crop. However, these properties also increase the probability of environmental contamination and exposure of nontarget organisms. Environmental contamination occurs via a number of routes including dust generated during drilling of dressed seeds, contamination and accumulation in arable soils and soil water, runoff into waterways, and uptake of pesticides by nontarget plants via their roots or dust deposition on leaves. Persistence in soils, waterways, and nontarget plants is variable but can be prolonged; for example, the half-lives of neonicotinoids in soils can exceed 1,000 days, so they can accumulate when used repeatedly. Similarly, they can persist in woody plants for periods exceeding 1 year. Breakdown results in toxic metabolites, though concentrations of these in the environment are rarely measured. Overall, there is strong evidence that soils, waterways, and plants in agricultural environments and neighboring areas are contaminated with variable levels of neonicotinoids or fipronil mixtures and their metabolites (soil, parts per billion (ppb)-parts per million (ppm) range; water, parts per trillion (ppt)-ppb range; and plants, ppb-ppm range). This provides multiple routes for chronic (and acute in some cases) exposure of nontarget animals. For example, pollinators are exposed through direct contact with dust during drilling; consumption of pollen, nectar, or guttation drops from seed-treated crops, water, and consumption of contaminated pollen and nectar from wild flowers and trees growing near-treated crops. Studies of food stores in honeybee colonies from across the globe demonstrate that colonies are routinely and chronically exposed to neonicotinoids, fipronil, and their metabolites (generally in the 1-100 ppb range), mixed with other pesticides some of which are known to act synergistically with neonicotinoids. Other nontarget organisms, particularly those inhabiting soils, aquatic habitats, or herbivorous insects feeding on noncrop plants in farmland, will also inevitably receive exposure, although data are generally lacking for these groups. We summarize the current state of knowledge regarding the environmental fate of these compounds by outlining what is known about the chemical properties of these compounds, and placing these properties in the context of modern agricultural practices.


Subject(s)
Insecticides/chemistry , Nicotinic Agonists/chemistry , Pyrazoles/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Agriculture , Animals , Insecta/drug effects , Insecticides/metabolism , Insecticides/toxicity , Nicotinic Agonists/metabolism , Nicotinic Agonists/toxicity , Plants/metabolism , Pyrazoles/metabolism , Pyrazoles/toxicity , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
6.
J Econ Entomol ; 103(1): 147-57, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20214380

ABSTRACT

Resistance management is essential for maintaining the efficacy and long-term durability of transgenic corn engineered to control western corn rootworm (Diabrotica virgifera virgifera Le Conte). Theoretically, a refuge can be provided by growing susceptible (refuge) plants in either a separate section of the field adjacent to resistant (transgenic) plants, or as a seed mixture. We examined the effects of varying the structure of a 10 and 20% refuge between currently approved structured refuges (block or strip plantings), as well as deploying the refuge within a seed mix, on adult emergence timing and magnitude, root damage and yield. Our 2-yr field study used naturally occurring western corn rootworm populations and included seven treatments: 10 and 20% block refuge, 10 and 20% strip refuge, 10 and 20% seed mix refuge, and 100% refuge. Beetles emerging from refuge corn emerged more synchronously with those emerging from transgenic (Bacillus thuringiensis [Berliner] Bt-RW) corn in seed mix refuges when compared with block refuges. The proportion of beetles emerging from refuge plants was significantly greater in a block and strip refuge structure than in a seed mix refuge. More beetles emerged from Bt-RW corn plants when they were grown as part of a seed mix. We discuss the potential benefits and drawbacks of a seed mix refuge structure in light of these findings.


Subject(s)
Coleoptera/physiology , Plant Roots/parasitology , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Endotoxins/genetics , Endotoxins/pharmacology , Female , Gene Expression Regulation, Plant , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Insecticide Resistance , Male , Pest Control, Biological , Plants, Genetically Modified , Time Factors , Zea mays/genetics
7.
J Econ Entomol ; 102(6): 2289-95, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20069859

ABSTRACT

The corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), can cause serious losses in many field and vegetable crops throughout the United States. Since their introduction, pyrethroid insecticides have become the primary insecticide class for managing H. zea. However, resistance has been reported in the southern United States and has recently became a concern in the Midwest after the observation of sporadic control failures and a decreased efficacy of pyrethroids in small-plot field trials. Larvae collected from Lafayette, IN, Vincennes, IN, and Collinsville, IL, were used to establish laboratory colonies in 2006 and 2007. Larvae from these colonies were tested for resistance to the pyrethroid insecticide bifenthrin by using topical assays. Adult males collected from pheromone traps in Lafayette were tested for resistance to cypermethrin by using the adult vial test (AVT) method. Resistance ratios of > or =8 were observed for the larvalbifenthrin assays in 2006 and 2007 in all colonies except for the 2007 Illinois colony. AVT assays conducted with cypermethrin showed approximately 15% survival in both 2006 and 2007 at the 5 microg per vial discriminating dose. These results suggest that low to moderate levels of pyrethroid resistance are present in these populations.


Subject(s)
Insecticides , Moths , Pyrethrins , Animals , Illinois , Indiana , Insecticide Resistance , Male
8.
J Econ Entomol ; 94(6): 1500-5, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11777055

ABSTRACT

The attraction of the stink bug Euschistus conspersus Uhler to sources of the synthetic pheromone component methyl (2E,4Z)-decadienoate was investigated in a series of field experiments in native vegetation surrounding commercial apple orchards in Washington. In experiments with pheromone lures placed inside two different tube-type traps, stink bugs were attracted to the immediate area around traps in large numbers, but very few were caught in the traps. Pheromone lures attached directly to the host plant mullein, Verbascum thapsus L., demonstrated that these 'baited" plants attracted significantly more E. conspersus than unbaited plants. Spring (reproductive) and summer (reproductively diapausing) E. conspersus adults, both males and females, were attracted to pheromone-baited plants. There was no significant difference in the number of male or female E. conspersus attracted to pheromone-baited traps or plants in any of the experiments, further characterizing methyl (2E,4Z)-decadienoate as an aggregation, and not a sex pheromone. Stink bug aggregations formed within 24-48 h of lure placement on mullein plants and remained constant until the lure was removed after which aggregations declined over 3-4 d to the level of unbaited plants. The implications of these studies for E. conspersus monitoring and management are discussed.


Subject(s)
Decanoates/chemistry , Hemiptera , Insect Control/methods , Pest Control, Biological , Pheromones/chemistry , Animals , Female , Male , Malus , Pest Control, Biological/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...