Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 160: 213855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643692

ABSTRACT

This research introduces a novel method that leverages Spirulina extract (S.E) as a bio-surfactant in the ultrasound-assisted synthesis (UAS) of Pd3+ (0.25-10 mol%) doped tin oxide (SnO2) self-assembled superstructures. Nanotechnology has witnessed significant advancements in recent years, driven by the exploration of novel synthesis methods and the development of advanced nanomaterials tailored for specific applications. Metal oxide nanoparticles, particularly SnO2, have garnered considerable attention due to their versatile properties and potential applications in various fields, including gas sensing, catalysis, and biomedical engineering. The study explores how varying influential parameters like S.E concentration, sonication time, pH, and sonication power can influence the resulting superstructures' morphology, size, and shape. A theoretical model for forming different hierarchical superstructures (HS) is proposed. X-ray diffraction (XRD) analysis confirms the crystalline tetragonal rutile phase of the SnO2:Pd HS. Raman spectroscopy reveals a red shift in the A1g mode, indicating phonon confinement due to various defects in the SnO2 structure. Further characterization using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) provides insights into particle size, surface morphology, elemental composition, and binding energy. The study also demonstrates the application of optimized SnO2:3Pd HS in developing latent fingerprints (LFPs) on different surfaces using a simple powder dusting (PD) method, with the fingerprints (FPs) visualized under normal light. A mathematical model developed in Python-based software is used to analyze various features of the developed FPs, including pore properties such as number, position, inter-spacing, area, and shape. Additionally, an in vitro MTT assay shows concentration-dependent anticancer activity of SnO2:3Pd nanoparticles (NPs) on MCF7 cell lines, highlighting their potential as a promising cancer treatment option. Overall, the study suggests that the optimized HS can serve as multifunctional platforms for biomedical and dermatoglyphics applications, demonstrating the versatility and potential of the synthesized materials.


Subject(s)
Antineoplastic Agents , Palladium , Tin Compounds , Tin Compounds/chemistry , Tin Compounds/pharmacology , Humans , Palladium/chemistry , Palladium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metal Nanoparticles/chemistry , MCF-7 Cells
2.
Biomater Adv ; 151: 213482, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37267751

ABSTRACT

This study reports on the synthesis of Fe3+-activated Sr9Al6O18 nanophosphors (SAO:Fe NPs) using a simple solution combustion process, which emits a pale green light and possesses excellent fluorescence properties. An in-situ powder dusting method was utilized to extract unique ridge features of latent fingerprints (LFPs) on various surfaces using ultra-violet 254 nm excitation. The results showed that SAO:Fe NPs possess high contrast, high sensitivity, and no background interference, enabling the observation of LFPs for longer periods. Poroscopy, which is the examination of sweat pores on the skin's papillary ridges, is important in the identification process, and the YOLOv8x program based on deep convolutional neural networks was used to study the features visible in FPs. The potential of SAO:Fe NPs to ameliorate oxidative stress and thrombosis was analyzed. The results showed that SAO:Fe NPs have antioxidant properties by scavenging 2,2-diphenylpicrylhydrazyl (DPPH) and normalized the stress markers in NaNO2-induced oxidative stress in Red Blood Cells (RBC). In addition, SAO:Fe inhibited platelet aggregation induced by adenosine diphosphate (ADP). Therefore, SAO:Fe NPs may have potential applications in advanced cardiology and forensic sciences. Overall, this study highlights the synthesis and potential applications of SAO:Fe NPs, which can enhance the sensitivity and specificity of fingerprint detection and provide insights into developing novel treatments for oxidative stress and thrombosis.


Subject(s)
Oxidative Stress , Thrombosis , Humans , Antioxidants/pharmacology , Platelet Function Tests , Platelet Aggregation
3.
Luminescence ; 38(3): 232-249, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36626333

ABSTRACT

Latent fingerprints (LFPs) are one among the most important types of evidences at crime scenes because of the distinctiveness and tenacity of the friction ridges in fingerprints (FPs). Therefore, it is essential in forensic science to develop a reliable method to detect LFPs. Traditional detection methods still face a number of difficulties, such as limited sensitivity, low contrast, strong background, and complex processing stages. In this study, MgO-ZrO2 :Tb3+ (1-5 mol%) (MZ:Tb) nanocomposites (NCs) were prepared via a simple solution combustion (SC) method at low temperature. The photoluminescence (PL) investigation demonstrates that when excited at 379 nm, the produced NCs emits distinctive emission peaks of terbium ions (Tb3+ ). According to the photometric results, the NCs can be employed as warm light NCs and emit light in the green portion of the colour spectrum. The estimated optical band gap from diffuse reflectance spectra is found to be in the range 4.84-4.97 eV. Regardless of the type of surface being used, the optimized MgO-ZrO2 :Tb3+ (4 mol%) (MZ:4Tb) NCs has a strong ability to minimize background fluorescence interference. With high contrast LFP and I-V type of cheiloscopy, these NCs present a flexible fluorescent mark for the identification of levels 1-3 details in forensic investigation.


Subject(s)
Magnesium Oxide , Nanocomposites , Dermatoglyphics , Terbium , Computer Security
SELECTION OF CITATIONS
SEARCH DETAIL
...