Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 143: 107991, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34763172

ABSTRACT

Compared to mechanical extraction methods, pulsed electric field (PEF) treatment provides an energy-efficient and gentle alternative. However, the biological processes involved are poorly understood. The unicellular green microalga Chlorella vulgaris was used as model organism to investigate the effect of PEF treatment on biological cells. A viability assay using fluorescein diacetate measured by flow cytometry was established. The influence of developmental stage on viability could be shown in synchronised cultures when applying PEF treatment with very low specific energies where one part of cells undergoes cell death, and the other part stays viable after treatment. Reactive oxygen species generation after similar low-energy PEF treatment could be shown, indicating that PEFs could act as abiotic stress signal. Most importantly, a cell-death inducing factor could be extracted. A water-soluble extract derived from microalgae suspensions incubated for 24 h after PEF treatment caused the recipient microalgae to die, even though the recipient cells had not been subjected to PEF treatment directly. The working model assumes that low-energy PEF treatment induces programmed cell death in C.vulgaris while specifically releasing a cell-death inducing factor. Low-energy PEF treatment with subsequent incubation period could be a novel biotechnological strategy to extract soluble proteins and lipids in cascade process.


Subject(s)
Chlorella vulgaris
2.
Bioresour Technol ; 306: 123099, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32163865

ABSTRACT

Pulsed electric field (PEF) was conducted for the extraction of proteins/C-Phycocyanins from Arthrospira platensis. The cyanobacterial suspension was treated with 1 µs long pulses at an electric field strength of 40 kV·cm-1 and a treatment energy of 114 kJ·kgsus-1 and 56 kJ·kgsus-1. For benchmarking, additional biomass was processed by high pressure homogenization. Homogeneity of the suspension prior to PEF-treatment influenced the protein/C-phycocyanin extraction efficiency. Stability of C-Phycocyanin during post-PEF incubation time was affected by incubation temperature and pH of the external medium. Biomass concentration severely affect proteins/C-Phycocyanins extraction yield via PEF-treatment. The optimum conditions for extraction of proteins/C-Phycocyanin was obtained at 23 °C while incubating in pH 8-buffer. The energy demand for PEF-treatment amounts to 0.56 MJ·kgdw-1 when processing biomass at 100 gdw·kgsus-1. PEF treatment enhances the protein/C-Phycocyanin extraction yield, thus, it can be suggested as preferential downstream processing method for the production of C-Phycocyanin from A. platensis biomass.

3.
Nat Plants ; 3(11): 905, 2017 11.
Article in English | MEDLINE | ID: mdl-29062021

ABSTRACT

In the version of this Article originally published, Fig. 6b, which is composed of individual pictures of six plants, inadvertently and erroneously displayed the same image of one Col-0 wt plant twice. This has been corrected so that Fig. 6b now shows two different representative plants for the Col-0 wt control.

4.
Nat Plants ; 2: 16185, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27892924

ABSTRACT

Plants and animals recognize microbial invaders by detecting microbe-associated molecular patterns (MAMPs) by cell surface receptors. Many plant species of the Solanaceae family detect the highly conserved nucleic acid binding motif RNP-1 of bacterial cold-shock proteins (CSPs), represented by the peptide csp22, as a MAMP. Here, we exploited the natural variation in csp22 perception observed between cultivated tomato (Solanum lycopersicum) and Solanum pennellii to map and identify the leucine-rich repeat (LRR) receptor kinase CORE (cold shock protein receptor) of tomato as the specific, high-affinity receptor site for csp22. Corroborating its function as a genuine receptor, heterologous expression of CORE in Arabidopsis thaliana conferred full sensitivity to csp22 and, importantly, it also rendered these plants more resistant to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our study also confirms the biotechnological potential of enhancing plant immunity by interspecies transfer of highly effective pattern-recognition receptors such as CORE to different plant families.


Subject(s)
Arabidopsis/immunology , Plant Proteins/genetics , Pseudomonas syringae/physiology , Receptors, Pattern Recognition/genetics , Solanum lycopersicum/genetics , Solanum/genetics , Arabidopsis/genetics , Bacterial Proteins/physiology , Cold Shock Proteins and Peptides/physiology , Solanum lycopersicum/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Receptors, Pattern Recognition/metabolism , Solanum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL