Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurophysiol ; 121(4): 1102-1110, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30699003

ABSTRACT

Doxapram is a respiratory stimulant used for decades as a treatment option in apnea of prematurity refractory to methylxanthine treatment. Its mode of action, however, is still poorly understood. We investigated direct effects of doxapram on the pre-Bötzinger complex (PreBötC) and on a downstream motor output system, the hypoglossal nucleus (XII), in the transverse brainstem slice preparation. While doxapram has only a modest stimulatory effect on frequency of activity generated within the PreBötC, a much more robust increase in the amplitude of population activity in the subsequent motor output generated in the XII was observed. In whole cell patch-clamp recordings of PreBötC and XII neurons, we confirmed significantly increased firing of evoked action potentials in XII neurons in the presence of doxapram, while PreBötC neurons showed no significant alteration in firing properties. Interestingly, the amplitude of activity in the motor output was not increased in the presence of doxapram compared with control conditions during hypoxia. We conclude that part of the stimulatory effects of doxapram is caused by direct input on brainstem centers with differential effects on the rhythm generating kernel (PreBötC) and the downstream motor output (XII). NEW & NOTEWORTHY The clinically used respiratory stimulant doxapram has distinct effects on the rhythm generating kernel (pre-Bötzinger complex) and motor output centers (nucleus hypoglossus). These effects are obliterated during hypoxia and are mediated by distinct changes in the intrinsic properties of neurons of the nucleus hypoglossus and synaptic transmission received by pre-Bötzinger complex neurons.


Subject(s)
Brain Stem/drug effects , Central Nervous System Stimulants/pharmacology , Doxapram/pharmacology , Hypoglossal Nerve/drug effects , Motor Neurons/drug effects , Respiratory System Agents/pharmacology , Action Potentials , Animals , Brain Stem/cytology , Brain Stem/physiology , Central Pattern Generators/cytology , Central Pattern Generators/drug effects , Central Pattern Generators/physiology , Female , Hypoglossal Nerve/cytology , Hypoglossal Nerve/physiology , Male , Mice , Motor Neurons/physiology , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...