Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Immunotoxicol ; 21(1): 2305452, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38291955

ABSTRACT

The demand for botanicals and natural substances in consumer products has increased in recent years. These substances usually contain proteins and these, in turn, can pose a risk for immunoglobulin E (IgE)-mediated sensitization and allergy. However, no method has yet been accepted or validated for assessment of potential allergenic hazards in such materials. In the studies here, a dual proteomic-bioinformatic approach is proposed to evaluate holistically allergenic hazards in complex mixtures of plants, insects, or animal proteins. Twelve commercial preparations of source materials (plant products, dust mite extract, and preparations of animal dander) known to contain allergenic proteins were analyzed by label-free proteomic analyses to identify and semi-quantify proteins. These were then evaluated by bioinformatics using AllerCatPro 2.0 (https://allercatpro.bii.a-star.edu.sg/) to predict no, weak, or strong evidence for allergenicity and similarity to source-specific allergens. In total, 4,586 protein sequences were identified in the 12 source materials combined. Of these, 1,665 sequences were predicted with weak or strong evidence for allergenic potential. This first-tier approach provided top-level information about the occurrence and abundance of proteins and potential allergens. With regards to source-specific allergens, 129 allergens were identified. The sum of the relative abundance of these allergens ranged from 0.8% (lamb's quarters) to 63% (olive pollen). It is proposed here that this dual proteomic-bioinformatic approach has the potential to provide detailed information on the presence and relative abundance of allergens, and can play an important role in identifying potential allergenic hazards in complex protein mixtures for the purposes of safety assessments.


Subject(s)
Allergens , Hypersensitivity , Animals , Proteomics , Proteins , Amino Acid Sequence
2.
Front Allergy ; 4: 1209495, 2023.
Article in English | MEDLINE | ID: mdl-37497076

ABSTRACT

Foreign proteins are potentially immunogenic, and a proportion of these are able to induce immune responses that result in allergic sensitization. Subsequent exposure of sensitized subjects to the inducing protein can provoke a variety of allergic reactions that may be severe, or even fatal. It has therefore been recognized for some time that it is important to determine a priori whether a given protein has the potential to induce allergic responses in exposed subjects. For example, the need to assess whether transgene products expressed in genetically engineered crop plants have allergenic properties. This is not necessarily a straightforward exercise (as discussed elsewhere in this edition), but the task becomes even more challenging when there is a need to conduct an overall allergenicity safety assessment of complex mixtures of proteins in botanicals or other natural sources that are to be used in consumer products. This paper describes a new paradigm for the allergenicity safety assessment of proteins that is based on the use of AllerCatPro 2.0, a new version of a previously described web application model developed for the characterization of the allergenic potential of proteins. Operational aspects of AllerCatPro 2.0 are described with emphasis on the application of new features that provide improvements in the predictions of allergenic properties such as the identification of proteins with high allergenic concern. Furthermore, the paper provides a description of strategies of how AllerCatPro 2.0 can best be deployed as a screening tool for identifying suitable proteins as ingredients in consumer products as well as a tool, in conjunction with label-free proteomic analysis, for identifying and semiquantifying protein allergens in complex materials. Lastly, the paper discusses the steps that are recommended for formal allergenicity safety assessment of novel consumer products which contain proteins, including consideration and integration of predicted consumer exposure metrics. The article therefore provides a holistic perspective of the processes through which effective protein safety assessments can be made of potential allergenic hazards and risks associated with exposure to proteins in consumer products, with a particular focus on the use of AllerCatPro 2.0 for this purpose.

3.
Toxicol In Vitro ; 90: 105591, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37011770

ABSTRACT

Consumer products containing botanicals or natural substances (BNS) are often preferred because there is a perception that 'natural' is safe. As with any product ingredient, a thorough safety assessment must be conducted, including a determination of skin sensitization potential. A modification of the Peroxidase Peptide Reactivity Assay (PPRA) was explored for screening BNS (B-PPRA) for their reactivity to a model cysteine peptide. The PPRA incorporates a horseradish peroxidase­hydrogen peroxide (+HRP/P) oxidation system for the activation of potential pre- and pro-haptens. BNS test materials contained <2% botanical constituent in either glycerin/water or propylene glycol/water. Stock solutions prepared in acetonitrile were diluted to 8 working concentrations. Direct reactivity was determined in reaction mixtures containing peptide and deferoxamine in potassium phosphate buffer. Enzyme-mediated reactivity determinations were performed with addition of +HRP/P. Initial studies demonstrated that results were reproducible and impact of carrier low. To determine the sensitivity of the assay, experiments were conducted with chamomile extract spiked with three sensitizers. Peptide depletion was observed in the +HRP/P reaction mixtures with isoeugenol spikes as low as 0.05%. The B-PPRA shows promise as a screening method for skin sensitization potential and could become part of a framework for the skin sensitization safety assessment of BNS.


Subject(s)
Peptides , Plant Extracts , Proof of Concept Study , Plant Extracts/toxicity , Skin , Peroxidase
4.
Nucleic Acids Res ; 50(W1): W36-W43, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35640594

ABSTRACT

Proteins in food and personal care products can pose a risk for an immediate immunoglobulin E (IgE)-mediated allergic response. Bioinformatic tools can assist to predict and investigate the allergenic potential of proteins. Here we present AllerCatPro 2.0, a web server that can be used to predict protein allergenicity potential with better accuracy than other computational methods and new features that help assessors making informed decisions. AllerCatPro 2.0 predicts the similarity between input proteins using both their amino acid sequences and predicted 3D structures towards the most comprehensive datasets of reliable proteins associated with allergenicity. These datasets currently include 4979 protein allergens, 162 low allergenic proteins, and 165 autoimmune allergens with manual expert curation from the databases of WHO/International Union of Immunological Societies (IUIS), Comprehensive Protein Allergen Resource (COMPARE), Food Allergy Research and Resource Program (FARRP), UniProtKB and Allergome. Various examples of profilins, autoimmune allergens, low allergenic proteins, very large proteins, and nucleotide input sequences showcase the utility of AllerCatPro 2.0 for predicting protein allergenicity potential. The AllerCatPro 2.0 web server is freely accessible at https://allercatpro.bii.a-star.edu.sg.


Subject(s)
Allergens , Computers , Internet , Proteins , Software , Humans , Allergens/chemistry , Allergens/immunology , Amino Acid Sequence , Food Hypersensitivity/etiology , Food Hypersensitivity/immunology , Proteins/chemistry , Proteins/immunology , Cosmetics/adverse effects , Cosmetics/chemistry , Protein Conformation , Datasets as Topic
5.
Toxicol Sci ; 182(2): 346-354, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34003265

ABSTRACT

Interest in the development of methods to evaluate the respiratory sensitization potential of low-molecular weight chemicals continues, but no method has yet been generally accepted or validated. A lack of chemical reference standards, together with uncertainty regarding relevant immunological mechanisms, has hampered method development. The first key event in the development of either skin or respiratory sensitization is the formation of stable adducts of the chemical with host proteins. This event is measured in the Direct Peptide Reactivity Assay using cysteine- and lysine-containing model peptides. It is hypothesized that protein reactivity and subsequent adduct formation may represent the earliest point of divergence in the pathways leading to either skin or respiratory sensitization. Direct Peptide Reactivity Assay data for 200 chemicals were compiled and grouped into respiratory, skin and nonsensitizers. Chemicals grouping was based on extensive literature research and expert judgment. To evaluate if chemical groups represent different peptide reactivity profiles, peptide reactivity data were clustered and compared with information on protein binding mechanisms and chemical categories available via the Organization for Economic Co-operation and Development. Toolbox. Respiratory sensitizers (n = 15) showed a significant (3-fold) higher lysine reactivity than skin sensitizers (n = 129). However, this difference was driven largely by the high representation of acid anhydrides among the respiratory sensitizers that showed clear lysine selectivity. Collectively, these data suggest that preferential reactivity for either cysteine or lysine is associated primarily with chemical structure, and that lysine preference is not a unifying characteristic of chemical respiratory allergens.


Subject(s)
Cysteine , Lysine , Allergens/toxicity , Chromatography, High Pressure Liquid , Molecular Weight , Skin
6.
Crit Rev Toxicol ; 51(10): 792-804, 2021 11.
Article in English | MEDLINE | ID: mdl-35142253

ABSTRACT

The induction of immunological responses that trigger bio-physiological symptoms in the respiratory tract following repeated exposure to a substance, is known as respiratory sensitization. The inducing compound is known as a respiratory sensitizer. While respiratory sensitization by high molecular weight (HMW) materials is recognized and extensively studied, much less information is available regarding low molecular weight (LMW) materials as respiratory sensitizers. Variability of symptoms presented in humans from such exposures, limited availability of (and access to) documented reports, and the absence of standardized and validated test models, hinders the identification of true respiratory sensitizers. This review aims to sort suspected LMW respiratory sensitizers based on available compelling, reasonable, inadequate, or questionable evidence in humans from occupational exposures and use this information to compose a reference list of reported chemical respiratory sensitizers for scientific research purposes. A list of 97 reported respiratory sensitizers was generated from six sources, and 52 LMW organic chemicals were identified, reviewed, and assigned to the four evidence categories. Less than 10 chemicals were confirmed with compelling evidence for induction of respiratory sensitization in humans from occupational exposures. Here, we propose the reference list for developing novel research on respiratory sensitization.


Subject(s)
Occupational Exposure , Respiratory System , Allergens/toxicity , Humans , Molecular Weight
7.
Crit Rev Toxicol ; 50(6): 521-530, 2020 07.
Article in English | MEDLINE | ID: mdl-32729356

ABSTRACT

The use of proteins and protein-containing materials in a variety of industrial and commercial products is increasing, with applications in pharmaceuticals, agrochemicals and consumer and personal care products. As a consequence there is a need to ensure potential and environmental risks are understood. One important requirement is an appreciation of the ability of proteins to induce allergic sensitization and allergic disease. However, there is currently no clear guidance for determination of whether or not to accept a new protein in a product based on potential allergenicity. A key requirement for effective risk assessment in this respect is an understanding of sensitizing potency. Here we describe issues and challenges associated with measurement of allergenic potency and explore emerging opportunities and possible ways forward. Effective assessment of the risk of allergy demands not only information about the likely conditions of exposure, but also an understanding of the sensitizing potency of protein allergens. For the purposes of this article sensitizing potency can be viewed as being the ease with which, and the concentration at which, proteins will induce sensitization in a previously non-sensitized subject. The immunological bases of protein allergy are summarized, and the properties that confer on proteins the ability to induce allergic sensitization are considered prior to a detailed exploration of the issues that have to be addressed for evaluation of sensitizing potency. Included among the important considerations are: the impact of route of exposure, identification of relevant dose metrics, and the requirement for reference standards. Finally, new and emerging opportunities to evaluate the sensitizing potency of allergenic proteins are reviewed, including the use of in silico modeling.


Subject(s)
Allergens , Hypersensitivity , Proteins , Humans
8.
Toxicol Sci ; 170(1): 210-222, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30903174

ABSTRACT

Use of botanicals and natural substances in consumer products has increased in recent years. Such extracts can contain protein that may theoretically represent a potential risk of IgE-mediated allergy. No method has yet been generally accepted or validated for assessment of the allergenic potential of proteins. For development of suitable methods datasets of allergenic and nonallergenic (or low allergenic) proteins are required that can serve, respectively, as positive and negative controls. However, data are unavailable on proteins that lack or have low allergenic potential. Here, low allergenic potential proteins are identified based on the assumption that proteins with established human exposure, but with a lack of an association with allergy, possess low allergenic potential. Proteins were extracted from sources considered to have less allergenic potential (corn, potato, spinach, rice, and tomato) as well as higher allergenic potential (wheat) regarding common allergenic foods. Proteins were identified and semi-quantified by label-free proteomic analysis conducted using mass spectrometry. Predicted allergenicity was determined using AllerCatPro (https://allercatpro.bii.a-star.edu.sg/). In summary, 9077 proteins were identified and semi-quantified from 6 protein sources. Within the top 10% of the most abundant proteins identified, 178 characterized proteins were found to have no evidence for allergenicity predicted by AllerCatPro and were considered to have low allergenic potential. This panel of low allergenic potential proteins provides a pragmatic approach to aid the development of alternative methods for robust testing strategies to distinguish between proteins of high and low allergenic potential to assess the risk of proteins from natural or botanical sources.


Subject(s)
Allergens/analysis , Food Hypersensitivity/diagnosis , Food Hypersensitivity/prevention & control , Proteins/analysis , Allergens/immunology , Computational Biology , Food Hypersensitivity/immunology , Humans , Proteins/immunology , Proteomics
9.
Bioinformatics ; 35(17): 3020-3027, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30657872

ABSTRACT

MOTIVATION: Due to the risk of inducing an immediate Type I (IgE-mediated) allergic response, proteins intended for use in consumer products must be investigated for their allergenic potential before introduction into the marketplace. The FAO/WHO guidelines for computational assessment of allergenic potential of proteins based on short peptide hits and linear sequence window identity thresholds misclassify many proteins as allergens. RESULTS: We developed AllerCatPro which predicts the allergenic potential of proteins based on similarity of their 3D protein structure as well as their amino acid sequence compared with a data set of known protein allergens comprising of 4180 unique allergenic protein sequences derived from the union of the major databases Food Allergy Research and Resource Program, Comprehensive Protein Allergen Resource, WHO/International Union of Immunological Societies, UniProtKB and Allergome. We extended the hexamer hit rule by removing peptides with high probability of random occurrence measured by sequence entropy as well as requiring 3 or more hexamer hits consistent with natural linear epitope patterns in known allergens. This is complemented with a Gluten-like repeat pattern detection. We also switched from a linear sequence window similarity to a B-cell epitope-like 3D surface similarity window which became possible through extensive 3D structure modeling covering the majority (74%) of allergens. In case no structure similarity is found, the decision workflow reverts to the old linear sequence window rule. The overall accuracy of AllerCatPro is 84% compared with other current methods which range from 51 to 73%. Both the FAO/WHO rules and AllerCatPro achieve highest sensitivity but AllerCatPro provides a 37-fold increase in specificity. AVAILABILITY AND IMPLEMENTATION: https://allercatpro.bii.a-star.edu.sg/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Food Hypersensitivity , Allergens , Amino Acid Sequence , Databases, Protein , Humans , Proteins , Sequence Alignment
10.
Toxicol Sci ; 147(2): 515-23, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26185204

ABSTRACT

The monoterpene ascaridole, a fairly stable endoperoxide found in essential oils such as tea tree oil can provoke allergic contact dermatitis which has been evidenced under patch test conditions. However, concomitantly we observed irritative skin reactions that demand further data underlining the sensitization potential of ascaridole. Here, we studied the effects of ascaridole on dendritic cell (DC) activation and protein reactivity, 2 key steps of chemical-induced skin sensitization. Treatment of human monocyte-derived DC with ascaridole found support for full DC maturation, a capability of sensitizers but not irritants. It induced significant upregulation of the expression of the costimulatory molecules CD86, CD80, CD40, and the adhesion molecule CD54 in a time-dependent manner. Maturation was accompanied by release of proinflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, and IL-8. Similar to other chemical skin sensitizers including hydroperoxides, we observed a certain reactivity of ascaridole toward cysteine- but not lysine-containing peptides. During recent years, evidence accumulated for a radical mechanism as trigger for protein reactivity of peroxides. Treatment of the fairly stable endoperoxide ascaridole with iron as radical inducer ("activated ascaridole") resulted in cysteine peptide reactivity exceeding by far that of ascaridole itself. Furthermore, activated ascaridole showed increased potential for induction of the Nrf2 target gene heme oxygenase 1 and upregulation of CD86 and CD54 on THP-1 cells, an established DC surrogate. These results indicate that radical formation could be involved in the steps leading to skin sensitization induced by the endoperoxide ascaridole.


Subject(s)
Dermatitis, Allergic Contact/etiology , Monoterpenes/adverse effects , Peroxides/adverse effects , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , CD40 Antigens/metabolism , Cell Line , Cyclohexane Monoterpenes , Cytokines/metabolism , Dendritic Cells , Flow Cytometry , Humans , Intercellular Adhesion Molecule-1/metabolism , Real-Time Polymerase Chain Reaction , Skin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...