Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Tob Regul Sci ; 1(2): 175-185, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26550583

ABSTRACT

OBJECTIVE: To evaluate the attention paid to larger sizes of graphic health warnings (GHWs) embedded within cigarette advertisements so as to assess their impacts on rural smokers. METHODS: Daily smokers (N = 298) were randomly assigned to view a cigarette advertisement with 3 conditions: 2 intervention conditions with GHW comprising 20% or 33% of the ad area, or a text-only control. Eye-tracking software measured attention in milliseconds. Binary outcome mediation was conducted. RESULTS: Intervention participants spent 24% of their time viewing the GHWs, compared to 10% for control (p < .01). The odds of GHW recall in the combined (20% and 33%) intervention group were 3.3 times higher than controls. Total dwell time mediated 33% of the effect of the graphic condition on any recall. CONCLUSIONS: GHWs in 20% of cigarette advertisement space attracted significantly more attention than text-only warnings; larger GHWs did not increase attention. Attention was significantly associated with warning recall; total time viewing mediated warning recall. Tobacco ads should include GHWs to attract the attention of smokers.

2.
PLoS One ; 8(3): e59222, 2013.
Article in English | MEDLINE | ID: mdl-23554999

ABSTRACT

Adenovirus (Ad) mediated expression of therapeutic proteins from salivary glands can result in the delivery of biologically active proteins into the circulation where they impart their physiological function. In recent years, Ad vector delivery to salivary glands (SGs) has emerged as a viable option for gene therapy. Here, we engineered a variant of human proinsulin (hProinsulin-B10) into an Ad vector and demonstrated its ability to transduce cell lines, and express a bioactive protein that induces the phosphorylation of AKT, a key insulin signaling molecule. We also examined its expression in mice following delivery of the vector to the parotid gland (PTG), the submandibular gland (SMG) or to the liver via the tail vein and assessed transgenic protein expression and vector containment for each delivery method. In all cases, hProinsulin-B10 was expressed and secreted into the circulation. Lower levels of circulating hProinsulin-B10 were obtained from the PTG while higher levels were obtained from the tail vein and the SMG; however, vector particle containment was best when delivered to the SMG. Expression of hProinsulin-B10 in the SMG of chemically induced diabetic mice prevented excessive hyperglycemia observed in untreated mice. These results demonstrate that hProinsulin-B10 can be expressed and secreted into the circulation from SGs and can function physiologically in vivo. The ability to remediate a diabetic phenotype in a model of type 1 diabetes mellitus is the first step in an effort that may lead to a possible therapy for diabetes.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Gene Expression , Genetic Therapy , Proinsulin/genetics , Submandibular Gland/metabolism , Adenoviridae/genetics , Animals , Blood Glucose/metabolism , Cell Line , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/therapy , Gene Transfer Techniques , Genetic Vectors , Humans , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Parotid Gland/metabolism , Proinsulin/biosynthesis , Proinsulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL