Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
Br J Cancer ; 130(7): 1196-1205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287178

ABSTRACT

BACKGROUND: 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS: Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS: Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS: AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Organophosphates , Quinazolines , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Apoptosis , Aurora Kinase B/pharmacology , Aurora Kinase B/therapeutic use , Cell Line, Tumor , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm
3.
Res Sq ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38076926

ABSTRACT

Genome-wide association studies have linked Iroquois-Homeobox 4 (IRX4) as a robust expression quantitative-trait locus associated with prostate cancer (PCa) risk. However, the intricate mechanism and regulatory factors governing IRX4 expression in PCa remain poorly understood. Here, we unveil enrichment of androgen-responsive gene signatures in metastatic prostate tumors exhibiting heightened IRX4 expression. Furthermore, we uncover a novel interaction between IRX4 and the androgen receptor (AR) co-factor, FOXA1, suggesting that IRX4 modulates PCa cell behavior through AR cistrome alteration. Remarkably, we identified a distinctive short insertion-deletion polymorphism (INDEL), upstream of the IRX4 gene that differentially regulates IRX4 expression through the disruption of AR binding. This INDEL emerges as the most significant PCa risk-associated variant within the 5p15 locus, in a genetic analysis involving 82,591 PCa cases and 61,213 controls and was associated with PCa survival in patients undergoing androgen-deprivation therapy. These studies suggest the potential of this INDEL as a prognostic biomarker for androgen therapy in PCa and IRX4 as a potential therapeutic target in combination with current clinical management.

4.
Cell Mol Gastroenterol Hepatol ; 16(6): 985-1009, 2023.
Article in English | MEDLINE | ID: mdl-37660948

ABSTRACT

BACKGROUND & AIMS: MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action. METHODS: Muc13-/- and wild-type littermate mice were gavaged with 2 isogenic strains of S Tm after pre-conditioning with streptomycin. We assessed clinical parameters, cecal histology, local and systemic bacterial load, and proinflammatory cytokines after infection. Cecal enteroids and epithelial cell lines were used to evaluate the mechanism of MUC13 activity after infection. The interaction between bacterial SiiE and MUC13 was assessed by using siiE-deficient Salmonella. RESULTS: S Tm-infected Muc13-/- mice had increased disease activity, histologic damage, and higher local and systemic bacterial loads. Mechanistically, we found that S Tm binds to MUC13 through its giant SiiE adhesin and that MUC13 acts as a pathogen-binding decoy shed from the epithelial cell surface after pathogen engagement, limiting bacterial invasion. In addition, MUC13 reduces epithelial cell death and intestinal barrier breakdown by enhancing nuclear factor kappa B signaling during infection, independent of its decoy function. CONCLUSIONS: We show for the first time that MUC13 plays a critical role in antimicrobial defense against pathogenic S Tm at the intestinal mucosal surface by both acting as a releasable decoy limiting bacterial invasion and reducing pathogen-induced cell death. This further implicates the cell surface mucin family in mucosal defense from bacterial infection.


Subject(s)
Bacterial Infections , Mucins , Animals , Mice , Bacterial Infections/genetics , Bacterial Infections/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/pathology , Mucins/metabolism , Salmonella typhimurium/metabolism
5.
Histopathology ; 83(4): 647-656, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37366040

ABSTRACT

AIMS: Accurate assessment of human epidermal growth factor receptor 2 (HER2) expression by HER2 immunohistochemistry and in-situ hybridisation (ISH) is critical for the management of patients with breast cancer. The revised 2018 ASCO/CAP guidelines define 5 groups based on HER2 expression and copy number. Manual pathologist quantification by light microscopy of equivocal and less common HER2 ISH groups (groups 2-4) can be challenging, and there are no data on interobserver variability in reporting of these cases. We sought to determine whether a digital algorithm could improve interobserver variability in the assessment of difficult HER2 ISH cases. METHODS AND RESULTS: HER2 ISH was evaluated in a cohort enriched for less common HER2 patterns using standard light microscopy versus analysis of whole slide images using the Roche uPath HER2 dual ISH image analysis algorithm. Standard microscopy demonstrated significant interobserver variability with a Fleiss's kappa value of 0.471 (fair-moderate agreement) improving to 0.666 (moderate-good) with the use of the algorithm. For HER2 group designation (groups 1-5), there was poor-moderate reliability between pathologists by microscopy [intraclass correlation coefficient (ICC) = 0.526], improving to moderate-good agreement (ICC = 0.763) with the use of the algorithm. In subgroup analysis, the algorithm improved concordance particularly in groups 2, 4 and 5. Time to enumerate cases was also significantly reduced. CONCLUSION: This work demonstrates the potential of a digital image analysis algorithm to improve the concordance of pathologist HER2 amplification status reporting in less common HER2 groups. This has the potential to improve therapy selection and outcomes for patients with HER2-low and borderline HER2-amplified breast cancers.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , In Situ Hybridization, Fluorescence/methods , Reproducibility of Results , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Algorithms , Biomarkers, Tumor/metabolism
6.
Res Sq ; 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37034758

ABSTRACT

Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility. The non-synonymous KLK3 SNP, rs17632542 (c.536T>C; Ile163Thr-substitution in PSA) is associated with reduced prostate cancer risk, however, the functional relevance is unknown. Here, we identify that the SNP variant-induced change in PSA biochemical activity as a previously undescribed function mediating prostate cancer pathogenesis. The 'Thr' PSA variant led to small subcutaneous tumours, supporting reduced prostate cancer risk. However, 'Thr' PSA also displayed higher metastatic potential with pronounced osteolytic activity in an experimental metastasis in-vivo model. Biochemical characterization of this PSA variant demonstrated markedly reduced proteolytic activity that correlated with differences in in-vivo tumour burden. The SNP is associated with increased risk for aggressive disease and prostate cancer-specific mortality in three independent cohorts, highlighting its critical function in mediating metastasis. Carriers of this SNP allele had reduced serum total PSA and a higher free/total PSA ratio that could contribute to late biopsy decisions and delay in diagnosis. Our results provide a molecular explanation for the prominent 19q13.3 KLK locus, rs17632542 SNP, association with a spectrum of prostate cancer clinical outcomes.

7.
Antioxid Redox Signal ; 39(1-3): 186-205, 2023 07.
Article in English | MEDLINE | ID: mdl-36792932

ABSTRACT

Significance: Reactive oxygen species (ROS) are critical to normal cellular function with redox homeostasis achieved by balancing ROS production with removal through detoxification mechanisms. Many of the conventional chemotherapies used to treat colorectal cancer (CRC) derive a proportion of their cytotoxicity from ROS generation, and resistance to chemotherapy is associated with elevated detoxification mechanisms. Furthermore, cancer stem cells demonstrate elevated detoxification mechanisms making definitive treatment with existing chemotherapy challenging. In this article, we review the roles of ROS in normal and malignant colonic cell biology and how existing and emerging therapies might harness ROS for therapeutic benefit. Recent Advances: Recent publications have elucidated the contribution of ROS to the cytotoxicity of conventional chemotherapy alongside the emerging approaches of photodynamic therapy (PDT), sonodynamic therapy (SDT), and radiodynamic therapy (RDT), in which ROS are generated in response to excitatory light, sound, or X-ray stimuli to promote cancer cell apoptosis. Critical Issues: The majority of patients with metastatic CRC have a very poor prognosis with a 5-year survival of ∼13% making the need for new or more effective treatments an imperative. Future Directions: Modulation of ROS through a combination of new and emerging therapies may improve the efficacy of current chemotherapy providing novel approaches to treat the otherwise resistant disease. Antioxid. Redox Signal. 39, 186-205.


Subject(s)
Colonic Neoplasms , Humans , Reactive Oxygen Species , Apoptosis , Disease Progression
8.
Pharmaceutics ; 15(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36678890

ABSTRACT

3D organoid model technologies have led to the development of innovative tools for cancer precision medicine. Yet, the gold standard culture system (Matrigel®) lacks the ability for extensive biophysical manipulation needed to model various cancer microenvironments and has inherent batch-to-batch variability. Tunable hydrogel matrices provide enhanced capability for drug testing in breast cancer (BCa), by better mimicking key physicochemical characteristics of this disease's extracellular matrix. Here, we encapsulated patient-derived breast cancer cells in bioprinted polyethylene glycol-derived hydrogels (PEG), functionalized with adhesion peptides (RGD, GFOGER and DYIGSR) and gelatin-derived hydrogels (gelatin methacryloyl; GelMA and thiolated-gelatin crosslinked with PEG-4MAL; GelSH). Within ranges of BCa stiffnesses (1−6 kPa), GelMA, GelSH and PEG-based hydrogels successfully supported the growth and organoid formation of HR+,−/HER2+,− primary cancer cells for at least 2−3 weeks, with superior organoid formation within the GelSH biomaterial (up to 268% growth after 15 days). BCa organoids responded to doxorubicin, EP31670 and paclitaxel treatments with increased IC50 concentrations on organoids compared to 2D cultures, and highest IC50 for organoids in GelSH. Cell viability after doxorubicin treatment (1 µM) remained >2-fold higher in the 3D gels compared to 2D and doxorubicin/paclitaxel (both 5 µM) were ~2.75−3-fold less potent in GelSH compared to PEG hydrogels. The data demonstrate the potential of hydrogel matrices as easy-to-use and effective preclinical tools for therapy assessment in patient-derived breast cancer organoids.

9.
Theranostics ; 12(16): 6915-6930, 2022.
Article in English | MEDLINE | ID: mdl-36276654

ABSTRACT

Rationale: An antibody-drug conjugate (ADC) is a targeted therapy consisting of a cytotoxic payload that is linked to an antibody which targets a protein enriched on malignant cells. Multiple ADCs are currently used clinically as anti-cancer agents significantly improving patient survival. Herein, we evaluated the rationale of targeting the cell surface oncoreceptor CUB domain-containing protein 1 (CDCP1) using ADCs and assessed the efficacy of CDCP1-directed ADCs against a range of malignant tumors. Methods: CDCP1 mRNA expression was evaluated using large transcriptomic datasets of normal/tumor samples for 23 types of cancer and 15 other normal organs, and CDCP1 protein expression was examined in 34 normal tissues, >300 samples from six types of cancer, and in 49 cancer cell lines. A recombinant human/mouse chimeric anti-CDCP1 antibody (ch10D7) was labelled with 89Zirconium or monomethyl auristatin E (MMAE) and tested in multiple pre-clinical cancer models including 36 cancer cell lines and three mouse xenograft models. Results: Analysis of CDCP1 expression indicates elevated CDCP1 expression in the majority of the cancers and restricted expression in normal human tissues. Antibody ch10D7 demonstrates a high affinity and specificity for CDCP1 inducing cell signalling via Src accompanied by rapid internalization of ch10D7/CDCP1 complexes in cancer cells. 89Zirconium-labelled ch10D7 accumulates in CDCP1 expressing cells enabling detection of pancreatic cancer xenografts in mice by PET imaging. Cytotoxicity of MMAE-labelled ch10D7 against kidney, colorectal, lung, ovarian, pancreatic and prostate cancer cells in vitro, correlates with the level of CDCP1 on the plasma membrane. ch10D7-MMAE displays robust anti-tumor effects against mouse xenograft models of pancreatic, colorectal and ovarian cancer. Conclusion: CDCP1 directed imaging agents will be useful for selecting cancer patients for personalized treatment with cytotoxin-loaded CDCP1 targeting agents including antibody-drug conjugates.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Immunoconjugates , Male , Female , Humans , Animals , Mice , Immunoconjugates/pharmacology , Zirconium , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cytotoxins , RNA, Messenger , Antigens, Neoplasm , Cell Adhesion Molecules
10.
Nat Rev Cancer ; 22(4): 223-238, 2022 04.
Article in English | MEDLINE | ID: mdl-35102281

ABSTRACT

Kallikrein-related peptidases (KLKs) are critical regulators of the tumour microenvironment. KLKs are proteolytic enzymes regulating multiple functions of bioactive molecules including hormones and growth factors, membrane receptors and the extracellular matrix architecture involved in cancer progression and metastasis. Perturbations of the proteolytic cascade generated by these peptidases, and their downstream signalling actions, underlie tumour emergence or blockade of tumour growth. Recent studies have also revealed their role in tumour immune suppression and resistance to cancer therapy. Here, we present an overview of the complex biology of the KLK family and its context-dependent nature in cancer, and discuss the different therapeutic strategies available to potentially target these proteases.


Subject(s)
Kallikreins , Neoplasms , Extracellular Matrix/metabolism , Humans , Kallikreins/metabolism , Signal Transduction , Tumor Microenvironment
11.
Contrast Media Mol Imaging ; 2021: 3153278, 2021.
Article in English | MEDLINE | ID: mdl-34621145

ABSTRACT

Colorectal cancer (CRC) is the third most common malignancy in the world, with 22% of patients presenting with metastatic disease and a further 50% destined to develop metastasis. Molecular imaging uses antigen-specific ligands conjugated to radionuclides to detect and characterise primary cancer and metastases. Expression of the cell surface protein CDCP1 is increased in CRC, and here we sought to assess whether it is a suitable molecular imaging target for the detection of this cancer. CDCP1 expression was assessed in CRC cell lines and a patient-derived xenograft to identify models suitable for evaluation of radio-labelled 10D7, a CDCP1-targeted, high-affinity monoclonal antibody, for preclinical molecular imaging. Positron emission tomography-computed tomography was used to compare zirconium-89 (89Zr)-10D7 avidity to a nonspecific, isotype control 89Zr-labelled IgGκ1 antibody. The specificity of CDCP1-avidity was further confirmed using CDCP1 silencing and blocking models. Our data indicate high avidity and specificity for of 89Zr-10D7 in CDCP1 expressing tumors at. Significantly higher levels than normal organs and blood, with greatest tumor avidity observed at late imaging time points. Furthermore, relatively high avidity is detected in high CDCP1 expressing tumors, with reduced avidity where CDCP1 expression was knocked down or blocked. The study supports CDCP1 as a molecular imaging target for CRC in preclinical PET-CT models using the radioligand 89Zr-10D7.


Subject(s)
Antigens, Neoplasm/genetics , Cell Adhesion Molecules/genetics , Colorectal Neoplasms/genetics , Positron Emission Tomography Computed Tomography , Radioisotopes/pharmacology , Zirconium/pharmacology , Animals , Antigens, Neoplasm/isolation & purification , Cell Adhesion Molecules/isolation & purification , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Heterografts , Humans , Ligands , Mice
12.
Mol Pharm ; 18(9): 3464-3474, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34448393

ABSTRACT

Optimal cytoreduction for ovarian cancer is often challenging because of aggressive tumor biology and advanced stage. It is a critical issue since the extent of residual disease after surgery is the key predictor of ovarian cancer patient survival. For a limited number of cancers, fluorescence-guided surgery has emerged as an effective aid for tumor delineation and effective cytoreduction. The intravenously administered fluorescent agent, most commonly indocyanine green (ICG), accumulates preferentially in tumors, which are visualized under a fluorescent light source to aid surgery. Insufficient tumor specificity has limited the broad application of these agents in surgical oncology including for ovarian cancer. In this study, we developed a novel tumor-selective fluorescent agent by chemically linking ICG to mouse monoclonal antibody 10D7 that specifically recognizes an ovarian cancer-enriched cell surface receptor, CUB-domain-containing protein 1 (CDCP1). 10D7ICG has high affinity for purified recombinant CDCP1 and CDCP1 that is located on the surface of ovarian cancer cells in vitro and in vivo. Our results show that intravenously administered 10D7ICG accumulates preferentially in ovarian cancer, permitting visualization of xenograft tumors in mice. The data suggest CDCP1 as a rational target for tumor-specific fluorescence-guided surgery for ovarian cancer.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Cell Adhesion Molecules/antagonists & inhibitors , Fluorescent Dyes/administration & dosage , Optical Imaging/methods , Ovarian Neoplasms/diagnosis , Animals , Antibodies, Monoclonal/chemistry , Antigens, Neoplasm , Cell Line, Tumor , Female , Fluorescent Dyes/chemistry , Humans , Indocyanine Green/administration & dosage , Indocyanine Green/chemistry , Injections, Intravenous , Mice , Ovarian Neoplasms/pathology , Xenograft Model Antitumor Assays
13.
Sci Adv ; 7(27)2021 06.
Article in English | MEDLINE | ID: mdl-34193425

ABSTRACT

While androgen-targeted therapies are routinely used in advanced prostate cancer (PCa), their effect is poorly understood in treating bone metastatic lesions and ultimately results in the development of metastatic castrate resistant prostate cancer (mCRPC). Here, we used an all-human microtissue-engineered model of mineralized metastatic tissue combining human osteoprogenitor cells, 3D printing and prostate cancer cells, to assess the effects of the antiandrogens, bicalutamide, and enzalutamide in this microenvironment. We demonstrate that cancer/bone stroma interactions and antiandrogens drive cancer progression in a mineralized microenvironment. Probing the bone microenvironment with enzalutamide led to stronger cancer cell adaptive responses and osteomimicry than bicalutamide. Enzalutamide presented with better treatment response, in line with enzalutamide delaying time to bone-related events and enzalutamide extending survival in mCRPC. The all-human microtissue-engineered model of mineralized metastatic tissue presented here represents a substantial advance to dissect the role of the bone tumor microenvironment and responses to therapies for mCPRC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Humans , Male , Prostatic Neoplasms, Castration-Resistant/pathology , Tumor Microenvironment
14.
J Am Chem Soc ; 143(23): 8911-8924, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34085829

ABSTRACT

Kallikrein-related peptidases (KLKs) are a family of secreted serine proteases, which form a network (the KLK activome) with an important role in proteolysis and signaling. In prostate cancer (PCa), increased KLK activity promotes tumor growth and metastasis through multiple biochemical pathways, and specific quantification and tracking of changes in the KLK activome could contribute to validation of KLKs as potential drug targets. Herein we report a technology platform based on novel activity-based probes (ABPs) and inhibitors enabling simultaneous orthogonal analysis of KLK2, KLK3, and KLK14 activity in hormone-responsive PCa cell lines and tumor homogenates. Importantly, we identifed a significant decoupling of KLK activity and abundance and suggest that KLK proteolysis should be considered as an additional parameter, along with the PSA blood test, for accurate PCa diagnosis and monitoring. Using selective inhibitors and multiplexed fluorescent activity-based protein profiling (ABPP), we dissect the KLK activome in PCa cells and show that increased KLK14 activity leads to a migratory phenotype. Furthermore, using biotinylated ABPs, we show that active KLK molecules are secreted into the bone microenvironment by PCa cells following stimulation by osteoblasts suggesting KLK-mediated signaling mechanisms could contribute to PCa metastasis to bone. Together our findings show that ABPP is a powerful approach to dissect dysregulation of the KLK activome as a promising and previously underappreciated therapeutic target in advanced PCa.


Subject(s)
Antineoplastic Agents/pharmacology , Coumarins/pharmacology , Enzyme Inhibitors/pharmacology , Kallikreins/antagonists & inhibitors , Prostate-Specific Antigen/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coumarins/chemistry , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Kallikreins/metabolism , Male , Molecular Structure , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology
15.
Biol Chem ; 402(10): 1257-1268, 2021 09 27.
Article in English | MEDLINE | ID: mdl-33977679

ABSTRACT

The protease activities are tightly regulated by inhibitors and dysregulation contribute to pathological processes such as cancer and inflammatory disorders. Tissue factor pathway inhibitor 2 (TFPI-2) is a serine proteases inhibitor, that mainly inhibits plasmin. This protease activated matrix metalloproteases (MMPs) and degraded extracellular matrix. Other serine proteases are implicated in these mechanisms like kallikreins (KLKs). In this study, we identified for the first time that TFPI-2 is a potent inhibitor of KLK5 and 12. Computer modeling showed that the first Kunitz domain of TFPI-2 could interact with residues of KLK12 near the catalytic triad. Furthermore, like plasmin, KLK12 was able to activate proMMP-1 and -3, with no effect on proMMP-9. Thus, the inhibition of KLK12 by TFPI-2 greatly reduced the cascade activation of these MMPs and the cleavage of cysteine-rich 61, a matrix signaling protein. Moreover, when TFPI-2 bound to extracellular matrix, its classical localisation, the KLK12 inhibition was retained. Finally, TFPI-2 was downregulated in human non-small-cell lung tumour tissue as compared with non-affected lung tissue. These data suggest that TFPI-2 is a potent inhibitor of KLK12 and could regulate matrix remodeling and cancer progression mediated by KLK12.


Subject(s)
Glycoproteins , Kallikreins , Carcinoma, Non-Small-Cell Lung , Humans , Lipoproteins , Lung Neoplasms
16.
Nat Chem Biol ; 17(7): 776-783, 2021 07.
Article in English | MEDLINE | ID: mdl-33859413

ABSTRACT

CUB domain-containing protein 1 (CDCP1) is an oncogenic orphan transmembrane receptor and a promising target for the detection and treatment of cancer. Extracellular proteolysis of CDCP1 by poorly defined mechanisms induces pro-metastatic signaling. We describe a new approach for the rapid identification of proteases responsible for key proteolytic events using a substrate-biased activity-based probe (sbABP) that incorporates a substrate cleavage motif grafted onto a peptidyl diphenyl phosphonate warhead for specific target protease capture, isolation and identification. Using a CDCP1-biased probe, we identify urokinase (uPA) as the master regulator of CDCP1 proteolysis, which acts both by directly cleaving CDCP1 and by activating CDCP1-cleaving plasmin. We show that coexpression of uPA and CDCP1 is strongly predictive of poor disease outcome across multiple cancers and demonstrate that uPA-mediated CDCP1 proteolysis promotes metastasis in disease-relevant preclinical in vivo models. These results highlight CDCP1 cleavage as a potential target to disrupt cancer and establish sbABP technology as a new approach to identify disease-relevant proteases.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/metabolism , Peptide Hydrolases/analysis , Animals , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Structure , Peptide Hydrolases/metabolism , Substrate Specificity
17.
Cancer Res ; 81(9): 2259-2269, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33509939

ABSTRACT

CUB-domain containing protein 1 (CDCP1) is a type I transmembrane glycoprotein that is upregulated in malignancies of the breast, lung, colorectum, ovary, kidney, liver, pancreas, and hematopoietic system. Here, we discuss CDCP1 as an important hub for oncogenic signaling and its key roles in malignant transformation and summarize approaches focused on exploiting it for cancer diagnosis and therapy. Elevated levels of CDCP1 are associated with progressive disease and markedly poorer survival. Predominantly located on the cell surface, CDCP1 lies at the nexus of key tumorigenic and metastatic signaling cascades, including the SRC/PKCδ, PI3K/AKT, WNT, and RAS/ERK axes, the oxidative pentose phosphate pathway, and fatty acid oxidation, making important functional contributions to cancer cell survival and growth, metastasis, and treatment resistance. These findings have stimulated the development of agents that target CDCP1 for detection and treatment of a range of cancers, and results from preclinical models suggest that these approaches could be efficacious and have manageable toxicity profiles.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Signal Transduction , Animals , Antigens, Neoplasm/chemistry , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/chemistry , Disease Progression , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Prognosis , Protein Domains , Signal Transduction/drug effects
18.
Cancers (Basel) ; 12(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255452

ABSTRACT

Recent reports have suggested the role of kallikrein-related peptidase 4 (KLK4) to be that of remodeling the tumor microenvironment in many cancers, including prostate cancer. Notably, these studies have suggested a pro-tumorigenic role for KLK4, especially in prostate cancer. However, these have been primarily in vitro studies, with limited in vivo studies performed to date. Herein, we employed an orthotopic inoculation xenograft model to mimic the growth of primary tumors, and an intracardiac injection to induce metastatic dissemination to determine the in vivo tumorigenic effects of KLK4 overexpressed in PC3 prostate cancer cells. Notably, we found that these KLK4-expressing cells gave rise to smaller localized tumors and decreased metastases than the parent PC-3 cells. To our knowledge, this is the first report of an anti-tumorigenic effect of KLK4, particularly in prostate cancer. These findings also provide a cautionary tale of the need for in vivo analyses to substantiate in vitro experimental data.

19.
Front Oncol ; 10: 592455, 2020.
Article in English | MEDLINE | ID: mdl-33224887

ABSTRACT

Once thought to be exclusively a storage hub for glucose, glycogen is now known to be essential in a range of physiological processes and pathological conditions. Glycogen lies at the nexus of diverse processes that promote malignancy, including proliferation, migration, invasion, and chemoresistance of cancer cells. It is also implicated in processes associated with the tumor microenvironment such as immune cell effector function and crosstalk with cancer-associated fibroblasts to promote metastasis. The enzymes of glycogen metabolism are dysregulated in a wide variety of malignancies, including cancers of the kidney, ovary, lung, bladder, liver, blood, and breast. Understanding and targeting glycogen metabolism in cancer presents a promising but under-explored therapeutic avenue. In this review, we summarize the current literature on the role of glycogen in cancer progression and discuss its potential as a therapeutic target for cancer treatment.

20.
Genes (Basel) ; 11(5)2020 05 08.
Article in English | MEDLINE | ID: mdl-32397189

ABSTRACT

Understanding the functional role of risk regions identified by genome-wide association studies (GWAS) has made considerable recent progress and is referred to as the post-GWAS era. Annotation of functional variants to the genes, including cis or trans and understanding their biological pathway/gene network enrichments, is expected to give rich dividends by elucidating the mechanisms underlying prostate cancer. To this aim, we compiled and analysed currently available post-GWAS data that is validated through further studies in prostate cancer, to investigate molecular biological pathways enriched for assigned functional genes. In total, about 100 canonical pathways were significantly, at false discovery rate (FDR)< 0.05), enriched in assigned genes using different algorithms. The results have highlighted some well-known cancer signalling pathways, antigen presentation processes and enrichment in cell growth and development gene networks, suggesting risk loci may exert their functional effect on prostate cancer by acting through multiple gene sets and pathways. Additional upstream analysis of the involved genes identified critical transcription factors such as HDAC1 and STAT5A. We also investigated the common genes between post-GWAS and three well-annotated gene expression datasets to endeavour to uncover the main genes involved in prostate cancer development/progression. Post-GWAS generated knowledge of gene networks and pathways, although continuously evolving, if analysed further and targeted appropriately, will have an important impact on clinical management of the disease.


Subject(s)
Adenocarcinoma/genetics , Carcinogenesis/genetics , Gene Regulatory Networks , Genome-Wide Association Study/methods , Prostatic Neoplasms/genetics , Adenocarcinoma/etiology , Disease Progression , Gene Expression Regulation, Neoplastic , Gene Ontology , Genetic Predisposition to Disease , HLA Antigens/genetics , Humans , Male , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Prostatic Neoplasms/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...