Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Opt Lett ; 49(15): 4118-4121, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090875

ABSTRACT

I present what is believed to be the first demonstration of using the cross-phase modulation (XPM) effect to achieve high-precision, all-optical synchronization and stabilization of the pulse repetition rate of a dissipative soliton resonance (DSR) mode-locked (ML) fiber laser working in the 1.06 µm wavelength range. Nanosecond 1.55 µm Master oscillator pulses were injected into the Slave cavity of the DSR laser to induce the XPM effect and subsequently synchronize both repetition rates. When referencing the Master laser to a rubidium frequency standard, the fractional instability of the DSR ML laser pulse repetition rate reached 1.26 × 10-12 for 1000 s integration time. The locking range and stability of the XPM synchronization are experimentally verified under varying conditions and discussed in the paper.

2.
Opt Express ; 32(6): 10679-10689, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571273

ABSTRACT

We present the first mid-infrared optical frequency comb spectrometer employing an absorption cell based on self-fabricated, all-silica antiresonant hollow-core fiber (ARHCF). The spectrometer is capable of measuring sub-mL sample volumes with 26 m interaction length and noise equivalent absorption sensitivity of 8.3 × 10-8 cm-1 Hz-1/2 per spectral element in the range of 2900 cm-1 to 3100 cm-1. Compared to a commercially available multipass cell, the ARHCF offers a similar interaction length in a 1000 times lower gas sample volume and a 2.8 dB lower transmission loss, resulting in better absorption sensitivity. The broad transmission windows of ARHCFs, in combination with a tunable optical frequency comb, make them ideal for multispecies detection, while the prospect of measuring samples in small volumes makes them a competitive technique to photoacoustic spectroscopy along with the robustness and prospect of coiling the ARHCFs open doors for miniaturization and out-of-laboratory applications.

3.
Opt Express ; 31(15): 24810-24820, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475299

ABSTRACT

In this paper, we experimentally asses the performance of wavelength modulation spectroscopy-based spectrometers incorporating 1.3 m-long gas absorption cells formed by an antiresonant hollow core fiber (ARHCF) and a Kagome hollow core fiber. To evaluate the discrepancies with minimum methodology error, the sensor setup was designed to test both fibers simultaneously, providing comparable measurement conditions. Ethane (C2H6) with a transition located at 2996.88 cm-1 was chosen as the target gas. The experiments showed, that due to better light guidance properties, the ARHCF-based sensor reached a minimum detection limit of 4 ppbv for 85 s integration time, which is more than two times improvement in comparison to the result obtained with the Kagome fiber.

4.
Opt Express ; 30(17): 31354-31366, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242219

ABSTRACT

In this work, a method of photothermal spectroscopic signal extraction is presented. The refractive index modulation readout is realized in a purely frequency detection-based approach, by demodulating the beatnotes of a mode-locked fiber laser operating at 1.56 µm. A unique and non-complex self-heterodyne harmonic amplification technique is employed, yielding an increase in the limit of detection by a factor of 22. The sensor's performance was evaluated by detecting nitric oxide at 5.26 µm, confirming the feasibility of separating the pump and probe sections of the device. The sensor reached a detection limit of 9.6 parts-per-billion by volume for an integration time of 136 s, with only a 20 cm-long laser-gas molecules interaction path length.

5.
Sensors (Basel) ; 22(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35898009

ABSTRACT

In this paper, the combination of using an anti-resonant hollow-core fiber (ARHCF), working as a gas absorption cell, and an inexpensive, commercially available watch quartz tuning fork (QTF), acting as a detector in the quartz-enhanced photothermal spectroscopy (QEPTS) sensor configuration is demonstrated. The proof-of-concept experiment involved the detection of methane (CH4) at 1651 nm (6057 cm-1). The advantage of the high QTF Q-factor combined with a specially designed low-noise amplifier and additional wavelength modulation spectroscopy with the second harmonic (2f-WMS) method of signal analysis, resulted in achieving a normalized noise-equivalent absorption (NNEA) at the level of 1.34 × 10-10 and 2.04 × 10-11 W cm-1 Hz-1/2 for 1 and 100 s of integration time, respectively. Results obtained in that relatively non-complex sensor setup show great potential for further development of cost-optimized and miniaturized gas detectors, taking advantage of the combination of ARHCF-based absorption cells and QTF-aided spectroscopic signal retrieval methods.


Subject(s)
Methane , Quartz , Amplifiers, Electronic , Proof of Concept Study , Spectrum Analysis/methods
6.
Sensors (Basel) ; 21(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34833667

ABSTRACT

In this work, we present femtosecond laser cutting of microchannels in a nodeless antiresonant hollow-core fiber (ARHCF). Due to its ability to guide light in an air core combined with exceptional light-guiding properties, an ARHCF with a relatively non-complex structure has a high application potential for laser-based gas detection. To improve the gas flow into the fiber core, a series of 250 × 30 µm microchannels were reproducibly fabricated in the outer cladding of the ARHCF directly above the gap between the cladding capillaries using a femtosecond laser. The execution time of a single lateral cut for optimal process parameters was 7 min. It has been experimentally shown that the implementation of 25 microchannels introduces low transmission losses of 0.17 dB (<0.01 dB per single microchannel). The flexibility of the process in terms of the length of the performed microchannel was experimentally demonstrated, which confirms the usefulness of the proposed method. Furthermore, the performed experiments have indicated that the maximum bending radius for the ARHCF, with the processed 100 µm long microchannel that did not introduce its breaking, is 15 cm.

7.
Opt Express ; 29(16): 26127-26136, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614925

ABSTRACT

We propose a unique way to design multipass cells (MPCs), which combines cost-efficient spherical mirrors with the high-density pattern of astigmatic mirrors. Such functionality was accomplished using at least three standard spherical mirrors appropriately tilted, which breaks the parallelism between them. A genetic algorithm (GA) supported the cell configuration optimization. A 16 m and 23.8 m optical path length (OPL) MPC was developed, practically realized, and proved by a time-of-flight (TOF) experiment to demonstrate the principle. Finally, CO2 detection at 2004nm obtaining 0.4 ppmv limit of detection (LOD) using wavelength modulation spectroscopy (WMS) with 10 s averaging was performed.

8.
Opt Express ; 29(20): 32568-32579, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615323

ABSTRACT

In this work, I demonstrate a novel configuration of a photothermal gas sensor. Detection of nitric oxide at a wavelength of 5.26 µm was possible by constructing an absorption cell based on a self-fabricated antiresonant hollow core fiber characterized by low losses at both the pump and probe wavelengths. Proper design of the sensor allowed using the heterodyne interferometry-based signal readout of the refractive index modulation, which yielded a record noise equivalent absorption of 2.81×10-8 cm-1 for 100 s integration time for mid-infrared fiber-based gas sensors. The obtained results clearly demonstrate the full potential of using properly designed antiresonant hollow core fibers in combination with sensitive gas detection methods.

9.
Sensors (Basel) ; 20(14)2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32650459

ABSTRACT

In this work, we present for the first time a laser-based dual gas sensor utilizing a silica-based Antiresonant Hollow-Core Fiber (ARHCF) operating in the Near- and Mid-Infrared spectral region. A 1-m-long fiber with an 84-µm diameter air-core was implemented as a low-volume absorption cell in a sensor configuration utilizing the simple and well-known Wavelength Modulation Spectroscopy (WMS) method. The fiber was filled with a mixture of methane (CH4) and carbon dioxide (CO2), and a simultaneous detection of both gases was demonstrated targeting their transitions at 3.334 µm and 1.574 µm, respectively. Due to excellent guidance properties of the fiber and low background noise, the proposed sensor reached a detection limit down to 24 parts-per-billion by volume for CH4 and 144 parts-per-million by volume for CO2. The obtained results confirm the suitability of ARHCF for efficient use in gas sensing applications for over a broad spectral range. Thanks to the demonstrated low loss, such fibers with lengths of over one meter can be used for increasing the laser-gas molecules interaction path, substituting bulk optics-based multipass cells, while delivering required flexibility, compactness, reliability and enhancement in the sensor's sensitivity.

10.
Opt Lett ; 45(6): 1326-1329, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32163956

ABSTRACT

Laser-based gas sensors utilizing various light-gas interaction phenomena have proved their capacity for detecting different gases. However, achieving reasonable sensitivity, especially in the mid-infrared, is crucial. Improving sensor detectivity usually requires incorporating multipass cells, which increase the light-gas interaction path length at a cost of reduced stability. An unconventional solution comes with the aid of hollow-core fibers. In such a fiber, light is guided inside an air-core which, when filled with the analyte gas can serve as a low-volume and robust absorption cell. Here we report on the use of a borosilicate antiresonant hollow-core fiber for laser-based gas sensing. Due to its unique structure and guidance, this fiber provides low-loss, single-mode transmission $ {\gt} {5}\;{\unicode{x00B5}{\rm m}}$>5µm. The feasibility of using the fiber as a gas cell was verified by detecting nitrous oxide at 5.26 µm with a minimum detection limit of 20 ppbv.

11.
Opt Express ; 27(26): 37435-37445, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878523

ABSTRACT

A compact and robust all-fiber difference frequency generation-based source of broadband mid-infrared radiation is presented. The source emits tunable radiation in the range between 6.5 µm and 9 µm with an average output power up to 5 mW at 125 MHz repetition frequency. The all-in-fiber construction of the source along with active stabilization techniques results in long-term repetition rate stability of 3 Hz per 10 h and a standard deviation of the output power better than 0.8% per 1 h. The applicability of the presented source to laser spectroscopy is demonstrated by measuring the absorption spectrum of nitrous oxide (N2O) around 7.8 µm. The robustness and good long- and short-term stability of the source opens up for applications outside the laboratory.

12.
Sensors (Basel) ; 19(15)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370141

ABSTRACT

In this paper, we demonstrate the laser-based gas sensing of methane near 3.3 µm inside hollow-core photonic crystal fibers. We exploit a novel anti-resonant Kagome-type hollow-core fiber with a large core diameter (more than 100 µm) which results in gas filling times of less than 10 s for 1.3-m-long fibers. Using a difference frequency generation source and chirped laser dispersion spectroscopy technique, methane sensing with sub-parts-per-million by volume detection limit is performed. The detection of ambient methane is also demonstrated. The presented results indicate the feasibility of using a hollow-core fiber for increasing the path-length and improving the sensitivity of the mid-infrared gas sensors.

13.
Opt Express ; 26(22): 28861-28871, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470056

ABSTRACT

A novel configuration of a photothermal gas sensor is demonstrated. Photothermal-induced gas refractive index (RI) modulation is probed by a simple, mode-locked (ML) ring cavity fiber laser, operating in the 1.55 µm wavelength region. The measured gas sample is placed in an open-path section of the ML laser and the RI variations directly translate to its optical path-length change, which is easily detectable as pulse repetition frequency deviations. Wavelength modulation spectroscopy (WMS) technique was used along with a custom-built FM demodulator simplifying the signal retrieval and acquisition. Normalized noise equivalent coefficient calculated for the sensor was 1 x 10-5 cm-1 W Hz-1/2.

14.
Opt Express ; 26(17): 21843-21848, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30130887

ABSTRACT

A laser-based spectrometer exploiting a novel Kagome-type hollow core photonic crystal fiber, which serves as a gas cell is demonstrated. Low attenuation of this silica-based fiber in the 3.4 µm wavelength region enables accessing strong, fundamental transitions of methane, which was used as a target analyte in the presented experiment. With an all-fiber differential frequency generation source combined with wavelength modulation spectroscopy technique detection limit at single parts-per-million by volume level was obtained. These results show potential for developing compact and sensitive Kagome-fiber-based mid-infrared laser spectrometers.

15.
Opt Express ; 26(2): 1125-1132, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401990

ABSTRACT

A new heterodyne interferometric method for optical signal detection in photoacoustic or photothermal spectroscopy is demonstrated and characterized. It relies on using one laser beam for the photoacoustic excitation of the gas sample that creates refractive index changes along the beam path, while another laser beam is used to measure these changes. A heterodyne-based detection of path-length changes is presented that does not require the interferometer to be balanced or stabilized, which significantly simplifies the optical design. We discuss advantages of this new approach to photoacoustic signal detection and the new sensing arrangements that it enables. An open-path photoacoustic spectroscopy of carbon dioxide at 2003 nm and a novel sensing configuration that enables three-dimensional spatial gas distribution measurement are experimentally demonstrated.

16.
Opt Express ; 25(21): 24853-24860, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041158

ABSTRACT

Our first demonstration of an all-PM fiber double clad erbium-ytterbium figure-8 laser mode-locked in a dissipative soliton resonance regime is presented. The laser generated µJ-level rectangular-shaped pulses with a maximum average output power of 1 W at 994 kHz repetition rate. The proposed configuration was characterized for two values resonator lengths - 44 and 205 m (total net-dispersion -0.9274 ps2 and -4.3084 ps2, respectively) to verify the possibility of non-complex tailoring of pulse parameters. The long-term stability of the all-PM configuration and self-starting of the mode-locking was experimentally confirmed by exposing the laser to forces of -5G to 7G magnitude on a vibration generator.

17.
Opt Lett ; 41(21): 4995-4998, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805668

ABSTRACT

The first demonstration of a compact all-fiber figure-9 double-clad erbium-ytterbium laser working in the dissipative soliton resonance (DSR) regime is presented. Mode-locking was achieved using a nonlinear amplifying loop (NALM) resonator configuration. The laser was assembled with an additional 475 m long spool of SMF28 fiber in the NALM loop in order to obtain large net-anomalous cavity dispersion (-10.4 ps2), and therefore ensure that DSR would be the dominant mode-locking mechanism. At maximum pump power (4.78 W) the laser generated rectangular-shaped pulses with 455 ns duration and an average power of 950 mW, which at a repetition frequency of 412 kHz corresponds to a record energy of 2.3 µJ per pulse.

18.
Opt Express ; 24(20): 22379-22386, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27828309

ABSTRACT

Emission of an all-fiber, Dissipative Soliton Resonance (DSR) mode-locked, Double-Clad (DC), Erbium-Ytterbium (Er:Yb) laser configuration is investigated under several different values of large anomalous dispersion. The laser was mode-locked by means of Nonlinear Amplifying Loop Mirror (NALM) in a Figure-8 (F8) resonator configuration. The boundaries of anomalous dispersion in which the laser operated in purely DSR regime was experimentally verified by changing the length of passive SMF28 fiber spliced into the NALM. The influence of 6 different values of dispersion (-1.061 ps2 to -10.7 ps2) on the pulse properties is presented and discussed.

19.
Opt Express ; 23(24): 30651-6, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698697

ABSTRACT

First demonstration of exploiting Dissipative Soliton Resonance (DSR) effects for generating high energy square-shaped pulses in an all-fiber mode-locked Double Clad (DC) erbium-ytterbium (Er-Yb) figure-8 laser (F8L) is presented. The laser was capable of generating 170 ns pulses with an average power of 1.7 W at 800 kHz repetition rate, which corresponds to a record pulse energy of 2.13 µJ, achieved directly from the resonator, without Q-switching, cavity dumping or additional amplifiers. Unique circulator-based out-coupling of high energy pulses in the directional loop is proposed as a method of preventing damage to the all-fiber setup. Appropriate laser design allowed utilizing Peak Power Clamping (PPC) effect for linear pulse duration tuning via changing the pump power.

20.
Opt Express ; 23(25): 32080-6, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26698999

ABSTRACT

First demonstration of a dissipative soliton resonance (DSR), double-clad (DC) active fiber, mode-locked figure-8 laser (F8L) enabling simultaneous amplification of 1064 nm seed signal is presented. Appropriate design supported peak power clamping (PPC) effect in the laser resonator and enabled easy tuning of the generated, square-shaped pulses from 20 ns to 170 ns. By incorporating a circulator-based isolating element in the directional loop of the laser, record pulse energy of 2.13 µJ was achieved, directly at the output of the resonator. The usability of the unique dual-wavelength design was experimentally put to a test in a difference frequency generation (DFG) setup using periodically poled lithium niobate (PPLN) crystal.

SELECTION OF CITATIONS
SEARCH DETAIL