Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 195: 110733, 2023 May.
Article in English | MEDLINE | ID: mdl-36841012

ABSTRACT

The L6 chondritic meteorite, HaH-346, fell in Libya. However, neither the exact date of the fall nor the exact size of the original meteoroid or asteroid is known. A specimen of the meteorite, weighing 488 g, was measured using ultra low-background gamma-ray spectrometry in the 225 m deep underground facility HADES. Activation products 22Na, 26Al, 60Co, 57Co, 54Mn and 44Ti were detected. The detection efficiency was determined by 3D scanning the meteorite and introducing this in the computer model of the detector and sample implemented in the MCNP6.2 Monte Carlo code. The activities of 22Na and 26Al support the hypothesis that the fall took place on 26 August 2018. Furthermore, the 60Co and 26Al activities indicate that the original radius of meteoroid was between 50 and 80 cm, which suggests the mass prior to atmospheric entry was between 2400 and 7300 kg.

2.
Astrobiology ; 22(3): 263-292, 2022 03.
Article in English | MEDLINE | ID: mdl-35263189

ABSTRACT

The Planetary Terrestrial Analogues Library (PTAL) project aims at building and exploiting a database involving several analytical techniques, to help characterize the mineralogical evolution of terrestrial bodies, starting with Mars. Around 100 natural Earth rock samples have been collected from selected locations to gather a variety of analogs for martian geology, from volcanic to sedimentary origin with different levels of alteration. All samples are to be characterized within the PTAL project with different mineralogical and elemental analysis techniques, including techniques brought on actual and future instruments at the surface of Mars (near infrared [NIR] spectroscopy, Raman spectroscopy, and laser-induced breakdown spectroscopy). This article presents the NIR measurements and interpretations acquired with the ExoMars MicrOmega spare instrument. MicrOmega is an NIR hyperspectral microscope, mounted in the analytical laboratory of the ExoMars rover Rosalind Franklin. All PTAL samples have been observed at least once with MicrOmega using a dedicated setup. For all PTAL samples, data description and interpretation are presented. For some chosen examples, color composite images and spectra are presented as well. A comparison with characterizations by NIR and Raman spectrometry is discussed for some of the samples. In particular, the spectral imaging capacity of MicrOmega allows detections of mineral components and potential organic molecules that were not possible with other one-spot techniques. In addition, it enables estimation of heterogeneities in the spatial distribution of various mineral species. The MicrOmega/PTAL data shall support the future observations and analyses performed by MicrOmega/Rosalind Franklin instrument.


Subject(s)
Exobiology , Mars , Earth, Planet , Exobiology/methods , Extraterrestrial Environment/chemistry , Minerals/analysis
3.
Astrobiology ; 21(8): 997-1016, 2021 08.
Article in English | MEDLINE | ID: mdl-34406809

ABSTRACT

Oxia Planum is a Noachian plain on Mars. It was chosen as the final landing site for in situ studies by ExoMars 2022 rover. The main scientific objectives of the mission are to understand the mineralogy and aqueous evolution of ancient Mars with relevance to habitability. Oxia is covered by vast deposits of Fe,Mg-phyllosilicates, but the exact nature of these deposits is not yet fully understood. We performed a survey of potential terrestrial analog rocks, and here we show combined mineralogical characterization of these rocks with their near-infrared spectral analysis. Samples from two terrestrial sites were studied: (1) vermiculitized chlorite-schists from Otago, New Zealand, which underwent an alteration process without significant oxidation; and (2) basaltic tuffs from Granby, Massachusetts, USA, with Fe-rich clays filling amygdales of supposedly hydrothermal origin. Both analogues are incorporated into the newly built Planetary Terrestrial Analogue Library (PTAL) collection. Oxia bedrock clay-rich deposits are spectrally matched best by a well-crystallized trioctahedral vermiculite/saponite mixture from the basaltic tuff, although the contribution of saponite must be minor. Otago vermiculite is a good analogue to Oxia vermiculite in terms of overall mineralogy and Fe content. However, spectral inconsistencies related to the Al content in the Otago clays indicate that illitization of vermiculite, which results from postalteration oxidation, did not occur at Oxia. This implies limited water/rock interactions and reducing conditions during deposition of sediments now constituting the bedrock at Oxia. Whereas the spectral match does not conclusively imply the mineralogy, trioctahedral vermiculite should be considered a likely mineral component of the bedrock unit at Oxia Planum. Vermiculite has great potential to store organic matter, and the postdeposition geological context of Oxia Planum derived from understanding of environmental conditions in analog sites is promising for organic matter preservation.


Subject(s)
Exobiology , Mars , Aluminum Silicates , Extraterrestrial Environment , Minerals , Water
4.
Astrobiology ; 21(3): 307-322, 2021 03.
Article in English | MEDLINE | ID: mdl-33252242

ABSTRACT

We evaluated the effectiveness of the ExoMars Raman laser spectrometer (RLS) to determine the degree of serpentinization of olivine-rich units on Mars. We selected terrestrial analogs of martian ultramafic rocks from the Leka Ophiolite Complex (LOC) and analyzed them with both laboratory and flight-like analytical instruments. We first studied the mineralogical composition of the samples (mostly olivine and serpentine) with state-of-the-art diffractometric (X-ray diffractometry [XRD]) and spectroscopic (Raman, near-infrared spectroscopy [NIR]) laboratory systems. We compared these results with those obtained using our RLS ExoMars Simulator. Our work shows that the RLS ExoMars Simulator successfully identified all major phases. Moreover, when emulating the automatic operating mode of the flight instrument, the RLS ExoMars Simulator also detected several minor compounds (pyroxene and brucite), some of which were not observed by NIR and XRD (e.g., calcite). Thereafter, we produced RLS-dedicated calibration curves (R2 between 0.9993 and 0.9995 with an uncertainty between ±3.0% and ±5.2% with a confidence interval of 95%) to estimate the relative content of olivine and serpentine in the samples. Our results show that RLS can be very effective in identifying serpentine, a scientific target of primary importance for the potential detection of biosignatures on Mars-the main objective of the ExoMars rover mission.


Subject(s)
Exobiology , Mars , Extraterrestrial Environment , Iron Compounds , Lasers , Magnesium Compounds , Silicates
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117360, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31319272

ABSTRACT

We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload. In order to extrapolate valuable indicators of the mineralogical data that could derive from the ExoMars/Raman Laser Spectrometer (RLS), laboratory results were then compared with the molecular data gathered through the RLS ExoMars Simulator. Beside correctly identifying all major phases (feldspar, pyroxene and olivine), the RLS ExoMars Simulator confirmed the presence of additional minor compounds (i.e. hematite and apatite) that were not detected by complementary techniques. Furthermore, concerning the in-depth study of olivine grains, the RLS ExoMars simulator was able to effectively detect the shifting of the characteristic double peak around 820 and 850 cm-1, from which the FeMg content of the analyzed crystals can be extrapolated. Considering that olivine is one of the main mineral phases of the ExoMars landing site (Oxia Planum), this study suggests that the ExoMars/RLS system has the potential to provide detailed information about the elemental composition of olivine on Mars.

SELECTION OF CITATIONS
SEARCH DETAIL
...