Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339061

ABSTRACT

From the point of view of the search for new pharmaceuticals, pyridazinone derivatives are a very promising group of compounds. In our previous works, we have proved that newly synthesized ligands from this group have desirable biological and pharmacokinetic properties. Therefore, we decided to continue the research evaluating the activity of pyrrolo[3,4-dpyridazinone derivatives. In this work, we focused on the interactions of five pyridazinone derivatives with the following biomolecules: DNA and two plasma proteins: orosomucoid and gamma globulin. Using several of spectroscopic methods, such as UV-Vis, CD, and fluorescence spectroscopy, we proved that the tested compounds form stable complexes with all biomacromolecules selected for analysis. These findings were also confirmed by the results obtained by molecular modeling. All tested pyridazinone derivatives bind to the ctDNA molecule via groove binding mechanisms. All these molecules can also be bound and transported by the tested plasma proteins; however, the stability of the complexes formed is lower than those formed with serum albumin.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , DNA/chemistry , Models, Molecular , Blood Proteins , Molecular Docking Simulation
2.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513351

ABSTRACT

Secure and efficient treatment of diverse pain and inflammatory disorders is continually challenging. Although NSAIDs and other painkillers are well-known and commonly available, they are sometimes insufficient and can cause dangerous adverse effects. As yet reported, derivatives of pyrrolo[3,4-d]pyridazinone are potent COX-2 inhibitors with a COX-2/COX-1 selectivity index better than meloxicam. Considering that N-acylhydrazone (NAH) moiety is a privileged structure occurring in many promising drug candidates, we decided to introduce this pharmacophore into new series of pyrrolo[3,4-d]pyridazinone derivatives. The current paper presents the synthesis and in vitro, spectroscopic, and in silico studies evaluating the biological and physicochemical properties of NAH derivatives of pyrrolo[3,4-d]pyridazinone. Novel compounds 5a-c-7a-c were received with high purity and good yields and did not show cytotoxicity in the MTT assay. Their COX-1, COX-2, and 15-LOX inhibitory activities were estimated using enzymatic tests and molecular docking studies. The title N-acylhydrazones appeared to be promising dual COX/LOX inhibitors. Moreover, spectroscopic and computational methods revealed that new compounds form stable complexes with the most abundant plasma proteins-AAG and HSA, but do not destabilize their secondary structure. Additionally, predicted pharmacokinetic and drug-likeness properties of investigated molecules suggest their potentially good membrane permeability and satisfactory bioavailability.


Subject(s)
Cyclooxygenase Inhibitors , Hydrazones , Lipoxygenase Inhibitors , Pyridazines , Pyrroles , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacokinetics , Hydrazones/pharmacology , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacokinetics , Cyclooxygenase Inhibitors/pharmacology , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Humans , Fibroblasts , Computer Simulation , Cell Membrane Permeability , Cell Line
3.
Life (Basel) ; 13(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36983915

ABSTRACT

One of the groups of organic compounds with potential use in medicine and pharmacy is phthalimide derivatives. They are characterized by a wide range of properties such as antibacterial, antifungal, and anti-inflammatory. In this study, we focused on research on four phthalimide derivatives with proven non-toxicity, which are cyclooxygenase inhibitors. With the use of molecular docking study and spectroscopic methods, such as fluorescence, circular dichroism, and FT-IR spectroscopies, we analyzed the way the tested compounds interact with plasma proteins. Among the many proteins present in the plasma, we selected three: albumin, α1-acid glycoprotein, and gamma globulin, which play significant roles in the human body. The obtained results showed that all tested compounds bind to the analyzed proteins. They interact most strongly with albumin, which is a transport protein. However, interactions with serum albumin and orosomucoid do not cause significant changes in their structures. Only in the case of gamma globulins significant changes were observed in protein secondary structure.

4.
Membranes (Basel) ; 13(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36984737

ABSTRACT

Despite the widespread and easy access to NSAIDs, effective and safe treatment of various inflammatory disorders is still a serious challenge because of the severe adverse effects distinctive to these drugs. The Mannich base derivatives of pyrrolo[3,4-c]pyrrole are potent, preferential COX-2 inhibitors with a COX-2/COX-1 inhibitory ratio better than meloxicam. Therefore, we chose the six most promising molecules and subjected them to further in-depth research. The current study presents the extensive biological, spectroscopic and in silico evaluation of the activity and physicochemical properties of pyrrolo[3,4-c]pyrrole derivatives. Aware of the advantages of dual COX-LOX inhibition, we investigated the 15-LOX inhibitory activity of these molecules. We also examined their antioxidant effect in several in vitro experiments in a protection and regeneration model. Furthermore, we defined how studied compounds interact with artificial models of cell membranes, which is extremely important for drugs administered orally with an intracellular target. The interactions and binding mode of the derivatives with the most abundant plasma proteins-human serum albumin and alpha-1-acid glycoprotein-are also described. Finally, we used computational techniques to evaluate their pharmacokinetic properties. According to the obtained results, we can state that pyrrolo[3,4-c]pyrrole derivatives are promising anti-inflammatory and antioxidant agents with potentially good membrane permeability.

5.
Biomed Pharmacother ; 161: 114520, 2023 May.
Article in English | MEDLINE | ID: mdl-36921538

ABSTRACT

Glioblastoma is one of the most aggressive tumours with a poor response to treatment and a poor prognosis for patients. One of the proteins expressed in glioblastoma tissue is CHI3L1 (YKL-40), which is upregulated and known for its angiogenesis-supporting and pro-tumour immunomodulatory effects in a variety of cancers. In this paper we present the anti-angiogenic, anti-migratory and immunomodulatory effects of the compound G721-0282, an inhibitor of CHI3L1. The inhibitor-induced changes were investigated using conventional techniques as well as the novel label-free digital holographic tomography (DHT), a quantitative phase imaging technique that allows the reconstruction of the refractive index (RI), which is used as an image contrast for 3D visualisation of living cells. DHT allowed digital staining of individual cells and intercellular structures based only on their specific RI. Quantitative spatially resolved analysis of the RI data shows that the concentration of G721-0282 leads to significant changes in the density of cells and their intracellular structures (in particular the cytoplasm and nucleus), in the volume of lipid droplets and in protein concentrations. Studies in the U-87 MG glioblastoma cell line, THP-1 monocytes differentiated into macrophages, human microvascular endothelial cells (HMEC-1) and in the spheroid model of glioblastoma composed of U-87 MG, HMEC-1 and macrophages suggest that inhibition of CHI3L1 may have potential in the antitumour treatment of glioblastoma. In this paper, we also propose a spheroid model for in vitro studies that mimics this type of tumour.


Subject(s)
Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Endothelial Cells/metabolism , Refractometry , Cell Differentiation , Immunity , Cell Line, Tumor , Chitinase-3-Like Protein 1
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769160

ABSTRACT

In this project, we combine two areas of research, experimental characterization and molecular docking studies of the interaction of positively charged oligopeptides with crucial blood plasma proteins. The investigated peptides are rich in NH2 groups of amino acid side chains from Dap, Orn, Lys, and Arg residues, which are relevant in protein interaction. The peptides are 9- and 11-mer with the following sequences: (Lys-Dab-Dab-Gly-Orn-Pro-His-Lys-Arg-Lys-Dbt), (Lys-Dab-Ala-Gly-Orn-Pro-His-Lys-Arg), and (Lys-Dab-Dab-Gly-Orn-Pro-Phe(2-F)-Lys-Arg). The net charge of the compound strongly depends on the pH environment and it is an important aspect of protein binding. The studied oligopeptides exhibit therapeutic properties: anti-inflammatory activity and the capacity to diminish reactive oxygen species (ROS). Therefore, the mechanism of potential binding with blood plasma components is the next challenge. The binding interaction has been investigated under pseudo-physiological conditions with the main blood plasma proteins: albumin (BSA), α1-acid glycoprotein (AAG), and γ-globulin fraction (GGF). The biomolecular quenching constant (kq) and binding constant (Kb) were obtained by fluorescence spectroscopy at various temperatures. Simultaneously, the changes in the secondary structure of proteins were monitored by circular dichroism (CD) and infrared spectroscopy (IR) by quantity analysis. Moreover, molecular docking studies were conducted to estimate the binding affinity, the binding domain, and the chemical nature of these interactions. The results show that the investigated oligopeptides could be mainly transported by albumin, and the binding domain I is the most favored cavity. The BSA and GGF are able to form stable complexes with the studied compounds as opposed to AAG. The binding reactions are spontaneous processes. The highest binding constants were determined for Lys-Dab-Dab-Gly-Orn-Pro-His-Lys-Arg-Lys-Dbt peptide, in which the values of the binding constants Kb to BSA and GGF were 10.1 × 104 dm3mol-1 and 3.39 × 103 dm3mol-1, respectively. The positively charged surface of peptides participated in salt bridge interaction with proteins; however, hydrogen bonds were also formed. The secondary structure of BSA and GGF after contact with peptides was changed. A reduction in the α-helix structure was observed with an increase in the ß-sheet and ß-turn and random coil structures.


Subject(s)
Oligopeptides , Peptides , Amino Acid Sequence , Molecular Docking Simulation , Peptides/chemistry , Oligopeptides/chemistry , Lysine/chemistry , Blood Proteins , Albumins
7.
Biomed Pharmacother ; 160: 114374, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36774726

ABSTRACT

BACKGROUND: Melanoma is a highly aggressive neoplasm with a high degree of malignancy and rapid acquisition of resistance by cancer cells. METHODS: Biological studies of a series of isoxazole compounds with immunomodulatory properties were preceded by in silico analysis. The assay evaluated the viability of NHDF and A375 cell cultures after the administration of isoxazole compounds after a 24-hour incubation period in the MTT test. Analyzes of ROS and NO scavenging, P-glycoprotein activity, and properties were performed. The levels of Caspase 3 and Caspase 9 were measured using ELISA to assess which pathways induced apoptosis by the tested compounds. On the chip, the synergistic effect of doxorubicin and the most active compound from the MM9 series on cells of the A375 melanoma line was determined. RESULTS: All tested N'-substituted derivatives of 5-amino-N,3-dimethyl-1,2-oxazole-4-carbohydrazide with immunomodulatory activity show multidirectional antitumor activity on A375 melanoma lines with an affinity for P-glycoprotein, induction of free radical formation and generation of DNA damage leading to the death of cancer cells, as well as formation of complexes with DNA Topoisomerase II. Most of the tested compounds show pro-apoptotic activity. The most active compound in the series induces apoptosis in three distinct pathways and acts synergistically with doxorubicin. CONCLUSIONS: The most active compound with immunomodulatory properties showed multidirectional antitumor activity against cells of the A375 melanoma line and also had a synergistic pro-apoptotic effect with doxorubicin, which may result in a reduction of this cytostatic dose with increased effectiveness.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Immunomodulating Agents , Melanoma/pathology , Apoptosis , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Isoxazoles/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation
8.
Pharmacol Rep ; 74(5): 890-908, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36129673

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is considered the most common cause of dementia among the elderly. One of the modifiable causes of AD is neuroinflammation. The current study aimed to investigate the influence of new tricyclic 1,2-thiazine derivatives on in vitro model of neuroinflammation and their ability to cross the blood-brain barrier (BBB). METHODS: The potential anti-inflammatory effect of new tricyclic 1,2-thiazine derivatives (TP1, TP4, TP5, TP6, TP7, TP8, TP9, TP10) was assessed in SH-SY5Y cells differentiated to the neuron-like phenotype incubated with bacterial lipopolysaccharide (5 or 50 µg/ml) or THP-1 microglial cell culture supernatant using MTT, DCF-DA, Griess, and fast halo (FHA) assays. Additionally, for cultures preincubated with 50 µg/ml lipopolysaccharide (LPS), a cyclooxygenase (COX) activity assay was performed. Finally, the potential ability of tested compounds to cross the BBB was evaluated by computational studies. Molecular docking was performed with the TLR4/MD-2 complex to assess the possibility of binding the tested compounds in the LPS binding pocket. Prediction of ADMET parameters (absorption, distribution, metabolism, excretion and toxicity) was also conducted. RESULTS: The unfavorable effect of LPS and co-culture with THP-1 cells on neuronal cell viability was counteracted with TP1 and TP4 in all tested concentrations. Tested compounds reduced the oxidative and nitrosative stress induced by both LPS and microglia activation and also reduced DNA damage. Furthermore, new derivatives inhibited total COX activity. Additionally, new compounds would cross the BBB with high probability and reach concentrations in the brain not lower than in the serum. The binding affinity at the TLR4/MD-2 complex binding site of TP4 and TP8 compounds is similar to that of the drug donepezil used in Alzheimer's disease. The ADMET analysis showed that the tested compounds should not be toxic and should show high intestinal absorption. CONCLUSIONS: New tricyclic 1,2-thiazine derivatives exert a neuroregenerative effect in the neuroinflammation model, presumably via their inhibitory influence on COX activity and reduction of oxidative and nitrosative stress.


Subject(s)
Alzheimer Disease , Neuroblastoma , Thiazines , Humans , Lipopolysaccharides/toxicity , Microglia , Toll-Like Receptor 4/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Molecular Docking Simulation , Coculture Techniques , Neuroinflammatory Diseases , Donepezil/pharmacology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Neuroblastoma/metabolism , Anti-Inflammatory Agents/pharmacology , Thiazines/adverse effects , Thiazines/metabolism
9.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35806006

ABSTRACT

Many publications in databases deal with the interactions of new drugs with albumin. However, it is not only albumin that is responsible for binding pharmaceutical molecules to proteins in the human body. There are many more proteins in plasma that are important for the study of the ADME pathway. Therefore, in this study, we have shown the results of the interactions between the plasma proteins albumin, orosomucoid, and gamma globulins and non-toxic anti-inflammatory phthalimide analogs, which due to the promising obtained results, may be potential candidates in the group of analgesic and anti-inflammatory drugs. Using spectroscopic methods and molecular modeling, we showed that all four tested compounds form complexes with the analyzed proteins. The formation of a complex with proteins raises the pharmacological efficacy of the drug. Therefore, the obtained results could be a step in the study of the pharmacokinetics and pharmacodynamics of new potential pharmaceuticals.


Subject(s)
Prodrugs , Albumins , Analgesics , Humans , Molecular Docking Simulation , Orosomucoid/metabolism , Phthalimides/chemistry , Phthalimides/pharmacology , Prodrugs/pharmacology
10.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681894

ABSTRACT

Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Dermis/drug effects , Fibroblasts/drug effects , Pyridazines/chemistry , Pyrroles/chemistry , Triazoles/chemistry , Anti-Inflammatory Agents/chemistry , Cell Survival , Cyclooxygenase 1/chemistry , Cyclooxygenase 2/chemistry , Cyclooxygenase Inhibitors/chemistry , Dermis/cytology , Dermis/enzymology , Drug Design , Fibroblasts/cytology , Fibroblasts/enzymology , Humans , In Vitro Techniques , Models, Molecular , Molecular Structure , Structure-Activity Relationship
11.
Biomed Pharmacother ; 141: 111878, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34243096

ABSTRACT

Alzheimer's disease is one of the most serious disorders of the 21st century. There is still no effective therapy for this condition. The study investigated the potential regenerative effect of four pyrrolo[3,4-d]pyridazinone derivatives in cultures of SH-SY5Y neuron-like cells preincubated with lipopolysaccharide (LPS) or cocultured with microglia-like cells. In addition to the traditional investigation of the effect on viability, the level of free radicals and nitric oxide, the average length of neurites was also measured. Via in silico studies, the possibility of penetration of the blood-brain barrier (BBB) by the tested compounds was assessed. The administration of LPS to the culture of SH-SY5Y cells as well as coculturing with microglia-like cells had a significant negative effect on the results of all the assays performed. The treatment with the tested derivatives in most cases significantly reduced this negative effect. The obtained results suggest that the compound L2 may have a beneficial impact on neuronal damage caused by LPS or proinflammatory cytokines secreted by microglia-like cells. Importantly, tested compounds can pass through the BBB, which allows them to enter the brain.


Subject(s)
Computer Simulation , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Microglia/drug effects , Pyridazines/pharmacology , Pyrroles/pharmacology , Cell Line, Tumor , Coculture Techniques , Dose-Response Relationship, Drug , Humans , Microglia/metabolism , Pyridazines/chemistry , Pyrroles/chemistry , THP-1 Cells
12.
Int J Mol Sci ; 22(14)2021 Jul 18.
Article in English | MEDLINE | ID: mdl-34299298

ABSTRACT

Isoindoline-1,3-dione derivatives constitute an important group of medicinal substances. In this study, nine new 1H-isoindole-1,3(2H)-dione derivatives and five potential pharmacophores were obtained in good yield (47.24-92.91%). The structure of the new imides was confirmed by the methods of elemental and spectral analysis: FT-IR, H NMR, and MS. Based on the obtained results of ESI-MS the probable path of the molecules decay and the hypothetical structure of the resulting pseudo-molecular ions have been proposed. The physicochemical properties of the new phthalimides were determined on the basis of Lipinski's rule. The biological properties were determined in terms of their cyclooxygenase (COX) inhibitory activity. Three compounds showed greater inhibition of COX-2, three compounds inhibited COX-1 more strongly than the reference compound meloxicam. From the obtained results, the affinity ratio COX-2/COX-1 was calculated. Two compounds had a value greater than that of meloxicam. All tested compounds showed oxidative or nitrosan stress (ROS and RNS) scavenging activity. The degree of chromatin relaxation outside the cell nucleus was lower than the control after incubation with all test compounds. The newly synthesized phthalimide derivatives showed no cytotoxic activity in the concentration range studied (10-90 µM). A molecular docking study was used to determined interactions inside the active site of cyclooxygenases.


Subject(s)
Isoindoles/chemistry , Phthalimides/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Catalytic Domain , Cyclooxygenase Inhibitors/chemistry , Isoindoles/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Phthalimides/pharmacology , Prostaglandin-Endoperoxide Synthases/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Structure-Activity Relationship
13.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348757

ABSTRACT

The long-term use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in treatment of different chronic inflammatory disorders is strongly restricted by their serious gastrointestinal adverse effects. Therefore, there is still an urgent need to search for new, safe, and efficient anti-inflammatory agents. Previously, we have reported the Mannich base-type derivatives of pyrrolo[3,4-d]pyridazinone which strongly inhibit cyclooxygenase, have better affinity to COX-2 isoenzyme and exert promising anti-oxidant activity. These findings encouraged us to perform further optimization of that structure. Herein, we present the design, synthesis, molecular docking, spectroscopic, and biological studies of novel pyrrolo[3,4-d]pyridazinone derivatives bearing 4-aryl-1-(1-oxoethyl)piperazine pharmacophore 5a,b-6a,b. The new compounds were obtained via convenient, efficient, one-pot synthesis. According to in vitro evaluations, novel molecules exert no cytotoxicity and act as selective COX-2 inhibitors. These findings stay in good correlation with molecular modeling results, which additionally showed that investigated compounds take a position in the active site of COX-2 very similar to Meloxicam. Moreover, all derivatives reduce the increased level of reactive oxygen and nitrogen species and prevent DNA strand breaks caused by oxidative stress. Finally, performed spectroscopic and molecular docking studies demonstrated that new compound interactions with bovine serum albumin (BSA) are moderate, formation of complexes is in one-to-one ratio, and binding site II (subdomain IIIA) is favorable.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Design , Mannich Bases/chemistry , Oxadiazoles/chemistry , Pyridazines/pharmacology , Pyrroles/pharmacology , Antioxidants/chemical synthesis , Catalytic Domain , Cell Line , Cell Survival/drug effects , Circular Dichroism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Female , Fibroblasts/metabolism , Humans , Inhibitory Concentration 50 , Middle Aged , Molecular Docking Simulation , Molecular Structure , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Serum Albumin, Bovine/chemistry , Structure-Activity Relationship
14.
Molecules ; 25(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322767

ABSTRACT

The subject of the work was the synthesis of new derivatives of1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione with potential analgesic and sedative activity. Eight compounds werereceived. The analgesic activity of the new compounds was confirmed in the "hot plate" test and in the "writhing" test. All tested imides 8-15 were more active in the "writhing" test than aspirin, and two of them, 9 and 11, were similar to morphine. In addition, all of the new imides inhibited the locomotor activity in mice to a statistically significant extent, and two of them also prolonged the duration of thiopental sleep.On the basis of the results obtained for the previously synthesized imides and the results presented in this paper, an attempt was madeto determine the relationship between thechemical structure of imides and their analgesic and sedativeproperties.


Subject(s)
Analgesics/pharmacology , Hypnotics and Sedatives/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Analgesics/chemistry , Animals , Hypnotics and Sedatives/chemistry , Locomotion/drug effects , Male , Mice , Pyridines/chemistry , Pyrroles/chemistry , Structure-Activity Relationship
15.
Bioorg Chem ; 102: 104035, 2020 09.
Article in English | MEDLINE | ID: mdl-32721780

ABSTRACT

Novel Mannich base analogues of pyrrolo[3,4-d]pyridazinone 7a,b-13a,b are designed and synthesized as potential anti-inflammatory agents. The title compounds are obtained via convenient one-pot synthesis with good yields. Their structures and properties are described by spectroscopic techniques and elemental analyses. The aim of this study is to evaluate the inhibitory activity of the new derivatives against both cyclooxygenase isoforms COX1 and COX2 as well as their cytotoxicity. The results clearly indicate that the tested compounds 7a,b-13a,b are not toxic, all show better affinity towards isoform COX-2, and some of them act as selective COX-2 inhibitors. Moreover, every examined derivative of pyrrolo[3,4-d]pyridazinone demonstrates better inhibitory activity towards COX-2 and a superior COX-2/COX-1 selectivity ratio compared to the reference drug meloxicam. Molecular docking studies confirm that compounds 7a,b-13a,b preferably bind COX-2 and all of them bind to the active site of cyclooxygenase in a way very similar to meloxicam. Subsequently, taking into account that inflammation is strongly correlated with oxidative stress and both of these processes can potentiate each other, synthesized Mannich bases are evaluated for potential antioxidant activity. Most of the investigated derivatives reduce induced oxidative and nitrosative stress. Moreover, compounds 7a,b, 8a, 10a,b, 11b, 12a,b-13a,b protect chromatin from oxidative stress and decrease the number of DNA strand breaks caused by intracellular growth of free radicals. Finally, a study of the binding mechanism between compounds 7a,b-13a,b and bovine serum albumin (BSA) was carried out. According to spectroscopic and molecular docking studies, all examined derivatives interact with BSA, which suggests their potential long half-life in vivo.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Molecular Docking Simulation/methods , Pyridazines/therapeutic use , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Computer Simulation , Drug Design , Humans , Molecular Structure , Pyridazines/chemistry , Pyridazines/pharmacology , Structure-Activity Relationship
16.
Molecules ; 25(12)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630594

ABSTRACT

Inhibition of cyclooxygenase is the way of therapeutic activities for anti-inflammatory pharmaceuticals. Serum albumins are the major soluble protein able to bind and transport a variety of exogenous and endogenous ligands, including hydrophobic pharmaceuticals. In this study, a novel N-substituted 1H-pyrrolo[3-c]pyridine-1,3(2H)-diones derivatives were synthesized and biologically evaluated for their inhibitory activity against cyclooxygenases and interactions with BSA. In vitro, COX-1 and COX-2 inhibition assays were performed. Interaction with BSA was studied by fluorescence spectroscopy and circular dichroism measurement. The molecular docking study was conducted to understand the binding interaction of compounds in the active site of cyclooxygenases and BSA. The result of the COX-1 and COX-2 inhibitory studies revealed that all the compounds potentially inhibited COX-1 and COX-2. The IC50 value was found similar to meloxicam. The intrinsic fluorescence of BSA was quenched by tested compounds due to the formation of A/E-BSA complex. The results of the experiment and molecular docking confirmed the main interaction forces between studied compounds and BSA were hydrogen bonding and van der Waals force.


Subject(s)
Cyclooxygenase 1/chemistry , Cyclooxygenase 2/chemistry , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/pharmacology , Dermis/metabolism , Fibroblasts/metabolism , Serum Albumin, Bovine/metabolism , Binding Sites , Cells, Cultured , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Dermis/cytology , Dermis/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Fluorescence , Humans , Ligands , Molecular Docking Simulation , Thermodynamics
17.
Int J Mol Sci ; 21(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586060

ABSTRACT

Inhibition of cholinesterases remains one of a few available treatment strategies for neurodegenerative dementias such as Alzheimer's disease and related conditions. The current study was inspired by previous data on anticholinesterase properties of diterpenoids from Perovskia atriplicifolia and other Lamiaceae species. The acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition by the three new natural compounds-(1R,15R)-1-acetoxycryptotanshinone (1), (1R)-1-acetoxytanshinone IIA (2), and (15R)-1-oxoaegyptinone A (3)-as well as, new for this genus, isograndifoliol (4) were assessed. Three of these compounds exhibited profound inhibition of butyrylcholinesterase (BChE) and much weaker inhibition of acetylcholinesterase (AChE). All compounds (1-4) selectively inhibited BChE (IC50 = 2.4, 7.9, 50.8, and 0.9 µM, respectively), whereas only compounds 3 and 4 moderately inhibited AChE (IC50 329.8 µM and 342.9 µM). Molecular docking and in silico toxicology prediction studies were also performed on the active compounds. Natural oxygenated norditerpenoids from the traditional Central Asian medicinal plant P. atriplicifolia are selective BChE inhibitors. Their high potential makes them useful candidate molecules for further investigation as lead compounds in the development of a natural drug against dementia caused by neurodegenerative diseases.


Subject(s)
Acetylcholinesterase/chemistry , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Diterpenes/pharmacology , Lamiaceae/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Humans , Molecular Docking Simulation , Structure-Activity Relationship
18.
Int J Pept Res Ther ; 23(4): 409-418, 2017.
Article in English | MEDLINE | ID: mdl-29170620

ABSTRACT

Three novel analogues of salivary peptides as sialorphin (QHNPR) and opiorphin (QRFSR) were synthesized by the solid-phase method. The sequences of these ligands were following: AHNPR, QANPR and QRFPR. The aim of our work was investigation in what way some structural modifications may impact on coordination abilities of studied peptides. In this work we presented the interaction of pentapeptides with copper(II) ions in wide range of pH. To determine the coordination model of ligands there were carried out several studies by spectroscopy (UV-Vis, CD) methods and potentiometric measurements.

19.
J Fluoresc ; 25(2): 277-82, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25612854

ABSTRACT

A two new compounds with potential biologically active were synthesized: ethyl 4-(2H-4,6-dimethyl-3-oxo-2,3-dihydroisothiazolo [5,4-b] pyridin-2-yl) butanoate and ethyl 4-(2H-4,6-dimethyl-2,3-dihydroisothiazolo [5,4-b] pyridin-3-yloxy) butanoate. The structures of all of the newly formed compounds were identified by elemental analysis, FTIR and (1)H NMR. Their optical properties were studied in ethanol and n-hexane by UV-Vis absorption and fluorescence spectroscopy. The ground-state and excited-state properties were investigated using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) methods. The results showed differences between emission spectra in ethanol and n-hexane solution (solvatochromism) for both new compounds.


Subject(s)
Pyridines/chemistry , Pyridines/chemical synthesis , Thiazoles/chemistry , Chemistry Techniques, Synthetic , Esters , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...