Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 998273, 2022.
Article in English | MEDLINE | ID: mdl-36438082

ABSTRACT

Using plant defense elicitors to protect crops against diseases is an attractive strategy to reduce chemical pesticide use. However, development of elicitors remains limited because of variable effectiveness in the field. In contrast to fungicides that directly target pathogens, elicitors activate plant immunity, which depends on plant physiological status. Other products, the biostimulants, can improve certain functions of plants. In this study, the objective was to determine whether a biostimulant via effects on grapevine physiology could increase effectiveness of a defense elicitor. A new methodology was developed to study biostimulant activity under controlled conditions using in vitro plantlets. Both biostimulant and defense elicitor used in the study were plant extracts. When added to the culture medium, the biostimulant accelerated the beginning of plantlet growth and affected the shoot and root development. It also modified metabolomes and phytohormone contents of leaves, stems, and roots. When applied on shoots, the defense elicitor changed metabolite and phytohormone contents, but effects were different depending on whether plantlets were biostimulated or controls. Defense responses and protection against Plasmopara viticola (downy mildew agent) were induced only for plantlets previously treated with the biostimulant, Therefore, the biostimulant may act by priming the defense elicitor action. In this study, a new method to screen biostimulants active on grapevine vegetative growth was used to demonstrate that a biostimulant can optimize the efficiency of a plant defense elicitor.

2.
Front Plant Sci ; 12: 638688, 2021.
Article in English | MEDLINE | ID: mdl-34267767

ABSTRACT

The root system plays an essential role in the development and physiology of the plant, as well as in its response to various stresses. However, it is often insufficiently studied, mainly because it is difficult to visualize. For grapevine, a plant of major economic interest, there is a growing need to study the root system, in particular to assess its resistance to biotic and abiotic stresses, understand the decline that may affect it, and identify new ecofriendly production systems. In this context, we have evaluated and compared three distinct growing methods (hydroponics, plane, and cylindric rhizotrons) in order to describe relevant architectural root traits of grapevine cuttings (mode of grapevine propagation), and also two 2D- (hydroponics and rhizotron) and one 3D- (neutron tomography) imaging techniques for visualization and quantification of roots. We observed that hydroponics tubes are a system easy to implement but do not allow the direct quantification of root traits over time, conversely to 2D imaging in rhizotron. We demonstrated that neutron tomography is relevant to quantify the root volume. We have also produced a new automated analysis method of digital photographs, adapted for identifying adventitious roots as a feature of root architecture in rhizotrons. This method integrates image segmentation, skeletonization, detection of adventitious root skeleton, and adventitious root reconstruction. Although this study was targeted to grapevine, most of the results obtained could be extended to other plants propagated by cuttings. Image analysis methods could also be adapted to characterization of the root system from seedlings.

3.
Front Plant Sci ; 9: 1085, 2018.
Article in English | MEDLINE | ID: mdl-30090107

ABSTRACT

Protecting vineyards from cryptogamic diseases such as downy mildew, caused by Plasmopara viticola, generally requires a massive use of phytochemicals. However, the issues on unintentional secondary effects on environment and human health, and the occurrence of P. viticola resistant strains, are leading to the development of alternative strategies, such as the use of biocontrol products. In this paper, we evidenced the ability of a plant extract to protect grapevine from P. viticola. Further experiments carried out both on cell suspensions and on plants revealed that plant extract activates typical defense-related responses such as the production of H2O2, the up-regulation of genes encoding pathogenesis-related proteins and stilbene synthase, as well as the accumulation of resveratrol or its derivative piceid. We also brought to light a strong direct effect of PE on the release and motility of P. viticola zoospores. Furthermore, we found out that PE application left dried residues on leaf surface, impairing zoospores to reach stomata. Altogether, our results highlight the different modes of action of a new biocontrol product able to protect grapevine against downy mildew.

4.
Plant Physiol Biochem ; 123: 141-148, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29241147

ABSTRACT

Elicitors trigger plant defense responses, including phytoalexin production and cell-wall reinforcement. Primary metabolism plays an important role in these responses as it fuels the associated energetic costs and provides precursors for the synthesis of the numerous secondary metabolites involved in defenses against pathogens. In this context, we aimed to determine whether oligosaccharidic elicitors differing in their capacity to activate defense-associated secondary metabolism in grapevine would differently impact primary metabolism. To answer this question, cell suspensions were treated with two elicitors: an oligogalacturonide, and the ß-glucan laminarin. Enzymatic activity assays together with targeted (HPLC) and global (GC-MS) analyses of metabolites were next performed to compare their impact on plant primary or secondary metabolism. The results showed that the oligogalacturonide, which induced the highest level of the phytoalexin resveratrol and the highest activity of stilbene synthase, also induced the highest activity of shikimate hydroxycinnamoyltransferase, a key enzyme involved in the synthesis of lignin. The oligogalacturonide-induced defenses had a significant impact on primary metabolism 24 h following elicitor treatment, with a reduced abundance of pyruvate and 2-oxoglutarate, together with an increase of a set of metabolites including carbohydrates and amino acids. Interestingly, an accumulation of galacturonate and gentiobiose was observed in the oligogalacturonide- and laminarin-treated cells, respectively, suggesting that both elicitors are rapidly hydrolyzed in grapevine cell suspension cultures.


Subject(s)
Metabolome/physiology , Plant Cells/enzymology , Plant Proteins/metabolism , Vitis/enzymology , Vitis/cytology
5.
Physiol Plant ; 156(3): 338-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26456072

ABSTRACT

Some ß-1,3-glucans and particularly sulfated laminarin (PS3) are known as resistance inducers (RIs) in grapevine against the downy mildew. However, their efficacy in vineyard is still often too low, which might be caused by a limited penetration through the leaf cuticle following spray application. We used (14) C-sucrose uptake experiments with grapevine leaves in order to select a surfactant as saccharide penetration enhancer. Our results showed that although sucrose foliar uptake was low, it was strongly enhanced by Dehscofix CO125 (DE), a highly ethoxylated surfactant. Fluorescent saccharides were then produced and laser scanning microscopy was used to analyze their foliar diffusion pattern in Arabidopsis thaliana and grapevine. Interestingly, sucrose and PS3 were seemingly able to penetrate the leaf cuticle only when formulated with DE. Diffusion could preferentially occur via stomata, anticlinal cell walls and trichomes. In grapevine, PS3 penetration rate was much higher on the stomateous abaxial surface of the leaf than on the adaxial surface. Finally, using DE allowed a higher level of downy mildew control by PS3, which corroborated diffusion observations. Our results have practical consequences for the improvement of treatments with saccharidic inducers on grape. That is, formulation of such RIs plays a critical role for their cuticular diffusion and consequently their efficacy. Also, spray application should preferentially target the abaxial surface of the leaves in order to maximize their penetration.


Subject(s)
Disease Resistance/drug effects , Ethylene Oxide/chemistry , Oomycetes/drug effects , Plant Diseases/microbiology , Plant Stomata/physiology , Polysaccharides/pharmacology , Surface-Active Agents/pharmacology , Vitis/microbiology , Carbon Radioisotopes , Cholesterol/metabolism , Diffusion , Disaccharides/pharmacology , Fluorescence , Kinetics , Plant Stomata/anatomy & histology , Plant Stomata/drug effects , Plant Stomata/ultrastructure , Polysaccharides/chemistry , Sucrose/metabolism , Vitis/drug effects , Waxes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...