Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Rep ; 76(2): 424-434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519732

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) can cause right ventricular (RV) failure and subsequent cardiohepatic syndrome referred to as congestive hepatopathy (CH). Passive blood stasis in the liver can affect inflammation, fibrosis, and ultimately cirrhosis. Cannabidiol (CBD) has many beneficial properties including anti-inflammatory and reduces RV systolic pressure and RV hypertrophy in monocrotaline (MCT)-induced PH in rats. Thus, it suggests that CBD may have the potential to limit CH development secondary to RV failure. The present study aimed to determine whether chronic administration of CBD can inhibit the CH secondary to RV hypertrophy associated with MCT-induced PH. METHODS: The experiments involved rats with and without MCT-induced PH. CBD (10 mg/kg) or its vehicle was administered once daily for 3 weeks after MCT injection (60 mg/kg). RESULTS: Monocrotaline administration increased the liver/body weight ratio. In histology examinations, we observed necrosis and vacuolar degeneration of hepatocytes as well as sinusoidal congestion. In biochemical studies, we observed increased levels of nuclear factor-κappa B (NF-κB), tumour necrosis factor-alpha (TNA-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6). CBD administration to PH rats reduced the liver/body weight ratio, improved the architecture of the liver, and inhibited the formation of necrosis. Cannabidiol also decreased the level of NF-κB, TNF-α, IL-1ß and IL-6. CONCLUSIONS: The studies show that CBD can protect the liver from CH probably through attenuating PH, protective effects on the RV, and possibly direct anti-inflammatory effects on liver tissue through regulation of the NF-κB pathway.


Subject(s)
Cannabidiol , Heart Failure , Hypertension, Pulmonary , Rats , Animals , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/prevention & control , Hypertrophy, Right Ventricular/prevention & control , Hypertrophy, Right Ventricular/drug therapy , Cannabidiol/pharmacology , Interleukin-6 , Monocrotaline/toxicity , NF-kappa B , Tumor Necrosis Factor-alpha , Anti-Inflammatory Agents/therapeutic use , Necrosis , Body Weight
2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446125

ABSTRACT

The enhancement of the endocannabinoid tone might have a beneficial influence on hypertension. Polypharmacology proposes multi-target-directed ligands (MTDLs) as potential therapeutic agents for the treatment of complex diseases. In the present paper, we studied JZL195, a dual inhibitor of the two major endocannabinoid-degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Hemodynamic parameters were assessed in conscious animals via radiotelemetry and tail-cuff methods and then evaluated by the area under the curve (AUC). Single administration of JZL195 induced dose-dependent weak hypotensive and bradycardic responses in SHR but not in WKY. Similarly, its chronic application revealed only a slight hypotensive potential which, however, effectively prevented the progression of hypertension and did not undergo tolerance. In addition, multiple JZL195 administrations slightly decreased heart rate only in WKY and prevented the gradual weight gain in both groups. JZL195 did not affect organ weights, blood glucose level, rectal temperature and plasma oxidative stress markers. In conclusion, chronic dual FAAH/MAGL inhibition prevents the progression of hypertension in SHR without affecting some basal functions of the body. In addition, our study clearly proves the suitability of AUC for the evaluation of weak blood pressure changes.


Subject(s)
Hypertension , Monoacylglycerol Lipases , Rats , Animals , Piperidines/pharmacology , Rats, Inbred SHR , Monoglycerides , Endocannabinoids , Amidohydrolases , Hypertension/drug therapy
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166753, 2023 08.
Article in English | MEDLINE | ID: mdl-37187449

ABSTRACT

Cannabidiol (CBD) is a non-intoxicating compound of Cannabis with anti-fibrotic properties. Pulmonary hypertension (PH) is a disease that can lead to right ventricular (RV) failure and premature death. There is evidence that CBD reduces monocrotaline (MCT)-induced PH, including reducing right ventricular systolic pressure (RVSP), vasorelaxant effect on pulmonary arteries, and decreasing expression of profibrotic markers in the lungs. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on profibrotic parameters in the RVs of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters and parameters related to RV dysfunction, i.e. plasma pro-B-type natriuretic peptide (NT-proBNP), cardiomyocyte width, interstitial and perivascular fibrosis area, amount of fibroblasts and fibronectin, as well as overexpression of the transforming growth of factor ß1 (TGF-ß1), galectin-3 (Gal-3), suppressor of mothers against decapentaplegic 2 (SMAD2), phosphorylated SMAD2 (pSMAD2) and alpha-smooth muscle actin (α-SMA). In contrast, vascular endothelial cadherin (VE-cadherin) levels were decreased in the RVs of MCT-induced PH rats. Administration of CBD reduced the amount of plasma NT-proBNP, the width of cardiomyocytes, the amount of fibrosis area, fibronectin and fibroblast expression, as well as decreased the expression of TGF-ß1, Gal-3, SMAD2, pSMAD2, and increased the level of VE-cadherin. Overall, CBD has been found to have the anti-fibrotic potential in MCT-induced PH. As such, CBD may act as an adjuvant therapy for PH, however, further detailed investigations are recommended to confirm our promising results.


Subject(s)
Cannabidiol , Heart Failure , Hypertension, Pulmonary , Rats , Animals , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Transforming Growth Factor beta , Fibronectins , Monocrotaline , Transforming Growth Factor beta1/metabolism , Fibrosis
4.
Biomed Pharmacother ; 159: 114234, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36634588

ABSTRACT

Cannabidiol (CBD) is a safe and well-tolerated plant-derived drug with anti-proliferative properties. Pulmonary hypertension (PH) is a rapidly progressive and still incurable disease. CBD diminishes monocrotaline (MCT)-induced PH, including reduced right ventricular systolic pressure, pulmonary vascular hypertrophy, and right ventricular remodeling. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg once daily for 21 days) on selected remodeling parameters in the lung of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters, e.g., transforming growth factor ß1 (TGF-ß1), galectin-3 (Gal-3), procollagen I, collagen I, C-propeptide, matrix metalloproteinase 9 (MMP-9) and an increased number of mast cells. In our study, we observed that the TGF-ß1, Gal-3, procollagen I, collagen I, C-propeptide, and mast cell levels in lung tissue were decreased after CBD administration to MCT-treated rats. In summary, CBD treatment has an anti-proliferative effect on MCT-induced PH. Given the beneficial multidirectional effects of CBD on PH, we believe that CBD can be used as an adjuvant PH therapy, but this argument needs to be confirmed by clinical trials.


Subject(s)
Cannabidiol , Hypertension, Pulmonary , Animals , Rats , Cell Proliferation , Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Lung , Monocrotaline/pharmacology , Procollagen/metabolism , Transforming Growth Factor beta1/metabolism
5.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35683028

ABSTRACT

This review is dedicated to the cross-talk between the (endo)cannabinoid and renin angiotensin systems (RAS). Activation of AT1 receptors (AT1Rs) by angiotensin II (Ang II) can release endocannabinoids that, by acting at cannabinoid CB1 receptors (CB1Rs), modify the response to AT1R stimulation. CB1R blockade may enhance AT1R-mediated responses (mainly vasoconstrictor effects) or reduce them (mainly central nervous system-mediated effects). The final effects depend on whether stimulation of CB1Rs and AT1Rs induces opposite or the same effects. Second, CB1R blockade may diminish AT1R levels. Third, phytocannabinoids modulate angiotensin-converting enzyme-2. Additional studies are required to clarify (1) the existence of a cross-talk between the protective axis of the RAS (Ang II-AT2 receptor system or angiotensin 1-7-Mas receptor system) with components of the endocannabinoid system, (2) the influence of Ang II on constituents of the endocannabinoid system and (3) the (patho)physiological significance of AT1R-CB1R heteromerization. As a therapeutic consequence, CB1R antagonists may influence effects elicited by the activation or blockade of the RAS; phytocannabinoids may be useful as adjuvant therapy against COVID-19; single drugs acting on the (endo)cannabinoid system (cannabidiol) and the RAS (telmisartan) may show pharmacokinetic interactions since they are substrates of the same metabolizing enzyme of the transport mechanism.


Subject(s)
COVID-19 , Cannabinoids , Angiotensin II/metabolism , Cannabinoids/pharmacology , Endocannabinoids/pharmacology , Humans , Receptor, Angiotensin, Type 1/metabolism , Receptors, Angiotensin/metabolism , Receptors, Cannabinoid , Renin/pharmacology , Renin-Angiotensin System
6.
Molecules ; 27(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35630804

ABSTRACT

Cannabidiol (CBD) is a plant-derived compound with antioxidant and anti-inflammatory properties. Pulmonary hypertension (PH) is still an incurable disease. CBD has been suggested to ameliorate monocrotaline (MCT)-induced PH, including reduction in right ventricular systolic pressure (RVSP), a vasorelaxant effect on pulmonary arteries and a decrease in the white blood cell count. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on the parameters of oxidative stress and inflammation in the lungs of rats with MCT-induced PH. In MCT-induced PH, we found a decrease in total antioxidant capacity (TAC) and glutathione level (GSH), an increase in inflammatory parameters, e.g., tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and cluster of differentiation 68 (CD68), and the overexpression of cannabinoid receptors type 1 and 2 (CB1-Rs, CB2-Rs). Administration of CBD increased TAC and GSH concentrations, glutathione reductase (GSR) activity, and decreased CB1-Rs expression and levels of inflammatory mediators such as TNF-α, IL -1ß, NF-κB, MCP-1 and CD68. In conclusion, CBD has antioxidant and anti-inflammatory effects in MCT-induced PH. CBD may act as an adjuvant therapy for PH, but further detailed preclinical and clinical studies are recommended to confirm our promising results.


Subject(s)
Cannabidiol , Hypertension, Pulmonary , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Cannabidiol/pharmacology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Lung/pathology , Monocrotaline , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
7.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576212

ABSTRACT

Currently, no treatment can completely cure pulmonary hypertension (PH), which can lead to right ventricular failure and, consequently, death. Therefore, searching for new therapies remains important. Increased resistance in pulmonary circulation is mainly caused by the excessive contraction and proliferation of small pulmonary arteries. Cannabinoids, a group of lipophilic compounds that all interact with cannabinoid receptors, exert a pulmonary vasodilatory effect through several different mechanisms, including mechanisms that depend on vascular endothelium and/or receptor-based mechanisms, and may also have anti-proliferative and anti-inflammatory properties. The vasodilatory effect is important in regulating pulmonary resistance, which can improve patients' quality of life. Moreover, experimental studies on the effects of cannabidiol (plant-derived, non-psychoactive cannabinoid) in animal PH models have shown that cannabidiol reduces right ventricular systolic pressure and excessive remodelling and decreases pulmonary vascular hypertrophy and pulmonary vascular resistance. Due to the potentially beneficial effects of cannabinoids on pulmonary circulation and PH, in this work, we review whether cannabinoids can be used as an adjunctive therapy for PH. However, clinical trials are still needed to recommend the use of cannabinoids in the treatment of PH.


Subject(s)
Cannabinoids/metabolism , Hypertension, Pulmonary/therapy , Animals , Anti-Inflammatory Agents/pharmacology , Cannabidiol/pharmacology , Cell Proliferation , Disease Models, Animal , Endocannabinoids/metabolism , Heart Ventricles , Humans , In Vitro Techniques , Ligands , Lung/metabolism , Nitric Oxide , Pulmonary Circulation , Receptors, Cannabinoid/metabolism , Receptors, G-Protein-Coupled/metabolism , Systole , Vasoconstriction , Vasodilation , Ventricular Dysfunction, Right
8.
Int J Mol Sci ; 21(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992900

ABSTRACT

Cannabidiol (CBD) is known for its vasorelaxant (including in the human pulmonary artery), anti-proliferative and anti-inflammatory properties. The aim of our study was to examine the potential preventive effect of chronic CBD administration (10 mg/kg/day for three weeks) on monocrotaline (MCT)-induced pulmonary hypertension (PH) rats. PH was connected with elevation of right ventricular systolic pressure; right ventricle hypertrophy; lung edema; pulmonary artery remodeling; enhancement of the vasoconstrictor and decreasing vasodilatory responses; increases in plasma concentrations of tissue plasminogen activator, plasminogen activator inhibitor type 1 and leukocyte count; and a decrease in blood oxygen saturation. CBD improved all abovementioned changes induced by PH except right ventricle hypertrophy and lung edema. In addition, CBD increased lung levels of some endocannabinoids (anandamide, N-arachidonoyl glycine, linolenoyl ethanolamide, palmitoleoyl ethanolamide and eicosapentaenoyl ethanolamide but not 2-arachidonoylglycerol). CBD did not affect the cardiopulmonary system of control rats or other parameters of blood morphology in PH. Our data suggest that CBD ameliorates MCT-induced PH in rats by improving endothelial efficiency and function, normalization of hemostatic alterations and reduction of enhanced leukocyte count determined in PH. In conclusion, CBD may be a safe, promising therapeutic or adjuvant therapy agent for the treatment of human pulmonary artery hypertension.


Subject(s)
Blood Pressure/drug effects , Cannabidiol/therapeutic use , Hypertension, Pulmonary/drug therapy , Pulmonary Artery/drug effects , Ventricular Function, Right/drug effects , Animals , Hypertension, Pulmonary/chemically induced , Male , Monocrotaline , Pulmonary Artery/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...