Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 142(1): 62-72, 2023 07 06.
Article in English | MEDLINE | ID: mdl-36796019

ABSTRACT

Bruton tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a major therapeutic target for B-cell-driven malignancies. However, approved covalent BTK inhibitors (cBTKis) are associated with treatment limitations because of off-target side effects, suboptimal oral pharmacology, and development of resistance mutations (eg, C481) that prevent inhibitor binding. Here, we describe the preclinical profile of pirtobrutinib, a potent, highly selective, noncovalent (reversible) BTK inhibitor. Pirtobrutinib binds BTK with an extensive network of interactions to BTK and water molecules in the adenosine triphosphate binding region and shows no direct interaction with C481. Consequently, pirtobrutinib inhibits both BTK and BTK C481 substitution mutants in enzymatic and cell-based assays with similar potencies. In differential scanning fluorimetry studies, BTK bound to pirtobrutinib exhibited a higher melting temperature than cBTKi-bound BTK. Pirtobrutinib, but not cBTKis, prevented Y551 phosphorylation in the activation loop. These data suggest that pirtobrutinib uniquely stabilizes BTK in a closed, inactive conformation. Pirtobrutinib inhibits BTK signaling and cell proliferation in multiple B-cell lymphoma cell lines, and significantly inhibits tumor growth in human lymphoma xenografts in vivo. Enzymatic profiling showed that pirtobrutinib was highly selective for BTK in >98% of the human kinome, and in follow-up cellular studies pirtobrutinib retained >100-fold selectivity over other tested kinases. Collectively, these findings suggest that pirtobrutinib represents a novel BTK inhibitor with improved selectivity and unique pharmacologic, biophysical, and structural attributes with the potential to treat B-cell-driven cancers with improved precision and tolerability. Pirtobrutinib is being tested in phase 3 clinical studies for a variety of B-cell malignancies.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Lymphoma , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Humans , Animals , Xenograft Model Antitumor Assays , Lymphoma/drug therapy , Drug Evaluation, Preclinical , Cell Line, Tumor , Mice, Inbred NOD , Male , Mice, SCID , Molecular Conformation , Mice
2.
Sci Immunol ; 5(46)2020 04 24.
Article in English | MEDLINE | ID: mdl-32332067

ABSTRACT

Signal transducer and activator of transcription (STAT) proteins have critical roles in the development and function of immune cells. STAT signaling is often dysregulated in patients with inflammatory bowel disease (IBD), suggesting the importance of STAT regulation during the disease process. Moreover, genetic alterations in STAT3 and STAT5 (e.g., deletions, mutations, and single-nucleotide polymorphisms) are associated with an increased risk for IBD. In this study, we elucidated the precise roles of STAT5 signaling in group 3 innate lymphoid cells (ILC3s), a key subset of immune cells involved in the maintenance of gut barrier integrity. We show that mice lacking either STAT5a or STAT5b are more susceptible to Citrobacter rodentium-mediated colitis and that interleukin-2 (IL-2)- and IL-23-induced STAT5 drives IL-22 production in both mouse and human colonic lamina propria ILC3s. Mechanistically, IL-23 induces a STAT3-STAT5 complex that binds IL-22 promoter DNA elements in ILC3s. Our data suggest that STAT5a/b signaling in ILC3s maintains gut epithelial integrity during pathogen-induced intestinal disease.


Subject(s)
Colitis/immunology , Interleukin-23/immunology , Interleukin-2/immunology , Interleukins/biosynthesis , STAT5 Transcription Factor/immunology , Animals , Interleukins/immunology , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT3 Transcription Factor/immunology , Interleukin-22
3.
Immunity ; 49(2): 342-352.e5, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30097293

ABSTRACT

Interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (ILC3) maintains gut homeostasis but can also promote inflammatory bowel disease (IBD). The regulation of ILC3-dependent colitis remains to be elucidated. Here we show that Foxp3+ regulatory T cells (Treg cells) prevented ILC3-mediated colitis in an IL-10-independent manner. Treg cells inhibited IL-23 and IL-1ß production from intestinal-resident CX3CR1+ macrophages but not CD103+ dendritic cells. Moreover, Treg cells restrained ILC3 production of IL-22 through suppression of CX3CR1+ macrophage production of IL-23 and IL-1ß. This suppression was contact dependent and was mediated by latent activation gene-3 (LAG-3)-an immune checkpoint receptor-expressed on Treg cells. Engagement of LAG-3 on MHC class II drove profound immunosuppression of CX3CR1+ tissue-resident macrophages. Our study reveals that the health of the intestinal mucosa is maintained by an axis driven by Treg cells communication with resident macrophages that withhold inflammatory stimuli required for ILC3 function.


Subject(s)
Antigens, CD/metabolism , CX3C Chemokine Receptor 1/metabolism , Colitis/immunology , Colitis/pathology , Interleukin-23 Subunit p19/immunology , Intestinal Mucosa/pathology , Macrophages/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cells, Cultured , Dendritic Cells/immunology , Forkhead Transcription Factors/metabolism , Histocompatibility Antigens Class II/immunology , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukins/immunology , Intestinal Mucosa/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Regulatory/transplantation , Lymphocyte Activation Gene 3 Protein , Interleukin-22
4.
J Clin Microbiol ; 54(7): 1835-1841, 2016 07.
Article in English | MEDLINE | ID: mdl-27147726

ABSTRACT

Direct-acting antivirals (DAAs) with activity against multiple genotypes of the hepatitis C virus (HCV) were recently developed and approved for standard-of-care treatment. However, sequencing assays to support HCV genotype 5 and 6 analysis are not widely available. Here, we describe the development of a sequencing assay for the NS3/4A, NS5A, and NS5B genes from HCV genotype 5 and 6 patient isolates. Genotype- and subtype-specific primers were designed to target NS3/4A, NS5A, and NS5B for cDNA synthesis and nested PCR amplification. Amplification was successfully performed for a panel of 32 plasma samples from HCV-infected genotype 5 and 6 patients with sequencing data obtained for all attempted samples. LiPA 2.0 (Versant HCV genotype 2.0) is a reverse hybridization line probe assay that is commonly used for genotyping HCV-infected patients enrolled in clinical studies. Using NS3/4A, NS5A, and NS5B consensus sequences, HCV subtypes were determined that were not available for the initial LiPA 2.0 result for genotype 6 samples. Samples amplified here included the following HCV subtypes: 5a, 6a, 6e, 6f, 6j, 6i, 6l, 6n, 6o, and 6p. The sequencing data generated allowed for the determination of the presence of variants at amino acid positions previously characterized as associated with resistance to DAAs. The simple and robust sequencing assay for genotypes 5 and 6 presented here may lead to a better understanding of HCV genetic diversity and prevalence of resistance-associated variants.


Subject(s)
Genotype , Genotyping Techniques/methods , Hepacivirus/classification , Hepatitis C, Chronic/virology , Viral Nonstructural Proteins/genetics , Genetic Variation , Hepacivirus/genetics , Hepacivirus/isolation & purification , Humans , Polymerase Chain Reaction , Sequence Analysis, DNA
5.
J Clin Microbiol ; 53(7): 2049-59, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25878342

ABSTRACT

Hepatitis C virus (HCV) exhibits a high genetic diversity and is classified into 6 genotypes, which are further divided into 66 subtypes. Current sequencing strategies require prior knowledge of the HCV genotype and subtype for efficient amplification, making it difficult to sequence samples with a rare or unknown genotype and/or subtype. Here, we describe a subtype-independent full-genome sequencing assay based on a random amplification strategy coupled with next-generation sequencing. HCV genomes from 17 patient samples with both common subtypes (1a, 1b, 2a, 2b, and 3a) and rare subtypes (2c, 2j, 3i, 4a, 4d, 5a, 6a, 6e, and 6j) were successfully sequenced. On average, 3.7 million reads were generated per sample, with 15% showing HCV specificity. The assembled consensus sequences covered 99.3% to 100% of the HCV coding region, and the average coverage was 6,070 reads/position. The accuracy of the generated consensus sequence was estimated to be >99% based on results from in vitro HCV replicon amplification, with the same extrapolated amount of input RNA molecules as that for the patient samples. Taken together, the HCV genomes from 17 patient samples were successfully sequenced, including samples with subtypes that have limited sequence information. This method has the potential to sequence any HCV patient sample, independent of genotype or subtype. It may be especially useful in confounding cases, like those with rare subtypes, intergenotypic recombination, or multiple genotype infections, and may allow greater insight into HCV evolution, its genetic diversity, and drug resistance development.


Subject(s)
Genome, Viral , Hepacivirus/genetics , High-Throughput Nucleotide Sequencing/methods , RNA, Viral/genetics , Sequence Analysis, DNA/methods , Hepacivirus/isolation & purification , Hepatitis C/virology , Humans
6.
Antimicrob Agents Chemother ; 58(4): 1930-42, 2014.
Article in English | MEDLINE | ID: mdl-24419349

ABSTRACT

As a class, nucleotide inhibitors (NIs) of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase offer advantages over other direct-acting antivirals, including properties, such as pangenotype activity, a high barrier to resistance, and reduced potential for drug-drug interactions. We studied the in vitro pharmacology of a novel C-nucleoside adenosine analog monophosphate prodrug, GS-6620. It was found to be a potent and selective HCV inhibitor against HCV replicons of genotypes 1 to 6 and against an infectious genotype 2a virus (50% effective concentration [EC50], 0.048 to 0.68 µM). GS-6620 showed limited activities against other viruses, maintaining only some of its activity against the closely related bovine viral diarrhea virus (EC50, 1.5 µM). The active 5'-triphosphate metabolite of GS-6620 is a chain terminator of viral RNA synthesis and a competitive inhibitor of NS5B-catalyzed ATP incorporation, with Ki/Km values of 0.23 and 0.18 for HCV NS5B genotypes 1b and 2a, respectively. With its unique dual substitutions of 1'-CN and 2'-C-Me on the ribose ring, the active triphosphate metabolite was found to have enhanced selectivity for the HCV NS5B polymerase over host RNA polymerases. GS-6620 demonstrated a high barrier to resistance in vitro. Prolonged passaging resulted in the selection of the S282T mutation in NS5B that was found to be resistant in both cellular and enzymatic assays (>30-fold). Consistent with its in vitro profile, GS-6620 exhibited the potential for potent anti-HCV activity in a proof-of-concept clinical trial, but its utility was limited by the requirement of high dose levels and pharmacokinetic and pharmacodynamic variability.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Nucleosides/chemistry , Nucleosides/pharmacology , Prodrugs/pharmacology , Virus Replication/drug effects , Antiviral Agents/adverse effects , Cell Line, Tumor , Cell Survival , Hep G2 Cells , Humans , Nucleosides/adverse effects , Prodrugs/adverse effects , Prodrugs/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors
7.
Antimicrob Agents Chemother ; 56(10): 5289-95, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22869562

ABSTRACT

GS-9451, a novel hepatitis C virus (HCV) nonstructural 3/4a (NS3/4a) protease inhibitor, is highly active in patients infected with HCV genotype 1 (GT 1). The aim of this study is to characterize the clinical resistance profile of GS-9451 in GT 1 HCV-infected patients in a phase 1, 3-day monotherapy study. The full-length NS3/4A gene was population sequenced at baseline, on the final treatment day, and at follow-up time points. NS3 protease domains from patient isolates with emerging mutations were cloned into an NS3 shuttle vector, and their susceptibilities to GS-9451 and other HCV inhibitors were determined using a transient replication assay. No resistance mutations at NS3 position 155, 156, or 168 were detected in any of the baseline samples or in viruses from patients treated with 60 mg of GS-9451 once daily. Among patients who received 200 mg and 400 mg of GS-9451, viruses with mutations at position D168 (D168E/G/V) and R155 (R155K), which confer high-level resistance to GS-9451, were detected in those with GT 1b and GT 1a virus, respectively. Viruses with D168 mutations were no longer detected in any GT 1b patient at day 14 and subsequent time points. In GT 1a patients, R155K mutants were replaced by the wild type in 57% of patients at week 24. These NS3 clinical mutants were sensitive to NS5B and NS5A inhibitors, as well as alpha interferon (IFN-α) and ribavirin. The lack of cross-resistance between GS-9451 and other classes of HCV inhibitors supports the utility of combination therapy.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepatitis C/drug therapy , Quinolines/pharmacology , Quinolines/therapeutic use , Cell Line, Tumor , Double-Blind Method , Hepatitis C/genetics , Humans
8.
J Clin Microbiol ; 49(9): 3168-74, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21715590

ABSTRACT

The Y448H mutation in NS5B has been selected by GS-9190 as well as several benzothiadiazine hepatitis C virus (HCV) polymerase inhibitors in vitro and in vivo. However, the level and the evolution kinetics of this resistance mutation prior to and during treatment are poorly understood. In this study, we developed an allele-specific real-time PCR (AS-PCR) assay capable of detecting Y448H when it was present at a level down to 0.5% within an HCV population of genotype 1a or 1b. No Y448H mutation was detected above the assay cutoff of 0.5% in genotype 1b-infected Con-1 replicons prior to in vitro treatment. However, the proportion of replicons with the Y448H mutation rapidly increased in a dose-dependent manner upon treatment with GS-9190. After 3 days of treatment, 1.2%, 6.8%, and >50% of the replicon population expressed Y448H with the use of GS-9190 at 1, 10, and 20 times its 50% effective concentration, respectively. In addition, plasma from 65 treatment-naïve HCV-infected patients (42 and 23 with genotype 1a and 1b, respectively) was tested for the presence of Y448H by AS-PCR and population sequencing. As expected, all patient samples were wild type at NS5B Y448 by population sequencing. AS-PCR results were obtained for 62/65 samples tested, with low levels of Y448H ranging from 0.5% to 3.0% detected in 5/62 (8%) treatment-naïve patient samples. These findings suggest the need for combination therapy with HCV-specific inhibitors to avoid viral rebound of preexisting mutant HCV.


Subject(s)
Amino Acid Substitution , Drug Monitoring/methods , Hepacivirus/isolation & purification , Hepatitis C/virology , Real-Time Polymerase Chain Reaction/methods , Viral Nonstructural Proteins/genetics , Virology/methods , Antiviral Agents/administration & dosage , Drug Resistance, Viral , Genotype , Hepacivirus/genetics , Hepatitis C/drug therapy , Humans , Mutant Proteins/genetics , Selection, Genetic
9.
Clin Diagn Lab Immunol ; 11(6): 1094-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15539512

ABSTRACT

Infection of mice with Helicobacter bilis is widespread in research and commercial mouse colonies. Therefore, sensitive, specific, and high-throughput assays are needed for rapid and accurate testing of mice in large numbers. This report describes a novel multiplex assay, based on fluorescent microbeads, for serodetection of H. bilis infection. The assay requires only a few microliters of serum to perform and is amenable to a high-throughput format. Individual microbead sets were conjugated to purified, H. bilis-specific, recombinant proteins P167C and P167D and bacterial membrane extracts from H. bilis and Helicobacter hepaticus. For detecting H. bilis infection in the microbead multiplex assay, P167C and P167D provided significantly higher sensitivities (94 and 100%, respectively) and specificities (100 and 95%, respectively) than membrane extract (78% sensitivity and 65% specificity). Microbead multiplex assay results were validated by enzyme-linked immunosorbent assay. Purified recombinant proteins showed low batch-to-batch variation; this feature allows for ease of quality control, assay robustness, and affordability. Thus, recombinant antigens are highly suitable in the multiplex microbead assay format for serodetection of H. bilis infection.


Subject(s)
Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Helicobacter Infections/diagnosis , Helicobacter Infections/veterinary , Helicobacter/immunology , Rodent Diseases/diagnosis , Animals , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect/methods , Helicobacter/genetics , Mice , Predictive Value of Tests , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Rodent Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...