Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2308421, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221693

ABSTRACT

High-entropy alloys nanoparticles (HEAs NPs) have gained considerable attention due to their extensive compositional tunability and intriguing catalytic properties. However, the synthesis of highly dispersed ultrasmall HEAs NPs remains a formidable challenge due to their inherent thermodynamic instability. In this study, highly dispersed ultrasmall (ca. 2 nm) PtCuGaFeCo HEAs NPs are synthesized using a one-pot solution-based method at 160 °C and atmospheric pressure. The PtCuGaFeCo NPs exhibit good catalytic activity for the oxygen reduction reaction (ORR). The half-wave potential relative to the reversible hydrogen electrode (RHE) reaches 0.88 V, and the mass activity and specific activity are approximately six times and four times higher than that of the commercial Pt/C catalyst. Based on X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analyses, the surface strain and optimized coordination environments of PtCuGaFeCo have led to high ORR activities in acidic media. Moreover, the ultrasmall size also plays an important role in enhancing catalytic performance. The work presents a facile and viable synthesis strategy for preparing the ultrasmall HEAs NPs, offering great potential in energy and electrocatalysis applications through entropy engineering.

2.
Angew Chem Int Ed Engl ; 60(30): 16404-16408, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-33979017

ABSTRACT

Li-CO2 batteries are regarded as next-generation high-energy-density electrochemical devices. However, the greatest challenge arises from the formation of the discharge product, Li2 CO3 , which would accumulate and deactivate heterogenous catalysts to cause huge polarization. Herein, Ru(bpy)3 Cl2 was employed as a solution-phase catalyst for Li-CO2 batteries and proved to be the most effective one screened so far. Spectroscopy and electrochemical analyses elucidate that the RuII center could interact with both CO2 and amorphous Li2 C2 O4 intermediate, thus promoting electroreduction process and delaying carbonate transformation. As a result, the charge potential is reduced to 3.86 V and over 60 discharge/charge cycles are achieved with a fixed capacity of 1000 mAh g-1 at a current density of 300 mA g-1 . Our work provides a new avenue to improve the electrochemical performance of Li-CO2 batteries with efficient mobile catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...