Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5560, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448683

ABSTRACT

Deformable attention only focuses on a small group of key sample-points around the reference point and make itself be able to capture dynamically the local features of input feature map without considering the size of the feature map. Its introduction into point cloud registration will be quicker and easier to extract local geometric features from point cloud than attention. Therefore, we propose a point cloud registration method based on Spatial Deformable Transformer (SDT). SDT consists of a deformable self-attention module and a cross-attention module where the deformable self-attention module is used to enhance local geometric feature representation and the cross-attention module is employed to enhance feature discriminative capability of spatial correspondences. The experimental results show that compared to state-of-the-art registration methods, SDT has a better matching recall, inlier ratio, and registration recall on 3DMatch and 3DLoMatch scene, and has a better generalization ability and time efficiency on ModelNet40 and ModelLoNet40 scene.

2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37420785

ABSTRACT

With the advancement of robotics, the field of path planning is currently experiencing a period of prosperity. Researchers strive to address this nonlinear problem and have achieved remarkable results through the implementation of the Deep Reinforcement Learning (DRL) algorithm DQN (Deep Q-Network). However, persistent challenges remain, including the curse of dimensionality, difficulties of model convergence and sparsity in rewards. To tackle these problems, this paper proposes an enhanced DDQN (Double DQN) path planning approach, in which the information after dimensionality reduction is fed into a two-branch network that incorporates expert knowledge and an optimized reward function to guide the training process. The data generated during the training phase are initially discretized into corresponding low-dimensional spaces. An "expert experience" module is introduced to facilitate the model's early-stage training acceleration in the Epsilon-Greedy algorithm. To tackle navigation and obstacle avoidance separately, a dual-branch network structure is presented. We further optimize the reward function enabling intelligent agents to receive prompt feedback from the environment after performing each action. Experiments conducted in both virtual and real-world environments have demonstrated that the enhanced algorithm can accelerate model convergence, improve training stability and generate a smooth, shorter and collision-free path.


Subject(s)
Robotics , Reward , Acceleration , Algorithms , Intelligence
3.
Front Aging Neurosci ; 14: 788571, 2022.
Article in English | MEDLINE | ID: mdl-35221988

ABSTRACT

Current brain network studies based on persistent homology mainly focus on the spatial evolution over multiple spatial scales, and there is little research on the evolution of a spatiotemporal brain network of Alzheimer's disease (AD). This paper proposed a persistent homology-based method by combining multiple temporal windows and spatial scales to study the spatiotemporal evolution of brain functional networks. Specifically, a time-sliding window method was performed to establish a spatiotemporal network, and the persistent homology-based features of such a network were obtained. We evaluated our proposed method using the resting-state functional MRI (rs-fMRI) data set from Alzheimer's Disease Neuroimaging Initiative (ADNI) with 31 patients with AD and 37 normal controls (NCs). In the statistical analysis experiment, most network properties showed a better statistical power in spatiotemporal networks than in spatial networks. Moreover, compared to the standard graph theory properties in spatiotemporal networks, the persistent homology-based features detected more significant differences between the groups. In the clustering experiment, the brain networks on the sliding windows of all subjects were clustered into two highly structured connection states. Compared to the NC group, the AD group showed a longer residence time and a higher window ratio in a weak connection state, which may be because patients with AD have not established a firm connection. In summary, we constructed a spatiotemporal brain network containing more detailed information, and the dynamic spatiotemporal brain network analysis method based on persistent homology provides stronger adaptability and robustness in revealing the abnormalities of the functional organization of patients with AD.

4.
Front Aging Neurosci ; 12: 188, 2020.
Article in English | MEDLINE | ID: mdl-32733231

ABSTRACT

Current researches on default mode network (DMN) in normal elderly have mainly focused on finding some dysfunctional areas with decreased or increased connectivity. The global network dynamics of apolipoprotein E (APOE) e4 allele group is rarely studied. In our previous brain network study, we have demonstrated the advantage of persistent homology. It can distinguish robust and noisy topological features over multiscale nested networks, and the derived properties are more stable. In this study, for the first time we applied persistent homology to analyze APOE-related effects on whole-brain functional network. In our experiments, the risk allele group exhibited lower network radius and modularity in whole brain DMN based on graph theory, suggesting the abnormal organization structure. Moreover, two suggested measures from persistent homology detected significant differences between groups within the left hemisphere and in the whole brain in two datasets. They were more statistically sensitive to APOE genotypic differences than standard graph-based measures. In summary, we provide evidence that the e4 genotype leads to distinct DMN functional alterations in the early phases of Alzheimer's disease using persistent homology approach. Our study offers a novel insight to explore potential biomarkers in healthy elderly populations carrying APOE e4 allele.

5.
Molecules ; 25(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471036

ABSTRACT

Despite the severe social burden caused by Alzheimer's disease (AD), no drug than can change the disease progression has been identified yet. The structural brain network research provides an opportunity to understand physiological deterioration caused by AD and its precursor, mild cognitive impairment (MCI). Recently, persistent homology has been used to study brain network dynamics and characterize the global network organization. However, it is unclear how these parameters reflect changes in structural brain networks of patients with AD or MCI. In this study, our previously proposed persistent features and various traditional graph-theoretical measures are used to quantify the topological property of white matter (WM) network in 150 subjects with diffusion tensor imaging (DTI). We found significant differences in these measures among AD, MCI, and normal controls (NC) under different brain parcellation schemes. The decreased network integration and increased network segregation are presented in AD and MCI. Moreover, the persistent homology-based measures demonstrated stronger statistical capability and robustness than traditional graph-theoretic measures, suggesting that they represent a more sensitive approach to detect altered brain structures and to better understand AD symptomology at the network level. These findings contribute to an increased understanding of structural connectome in AD and provide a novel approach to potentially track the progression of AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , White Matter/diagnostic imaging , Aged , Aged, 80 and over , Cognitive Dysfunction/physiopathology , Connectome/methods , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged
6.
Molecules ; 24(12)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234358

ABSTRACT

Recent research of persistent homology in algebraic topology has shown that the altered network organization of human brain provides a promising indicator of many neuropsychiatric disorders and neurodegenerative diseases. However, the current slope-based approach may not accurately characterize changes of persistent features over graph filtration because such curves are not strictly linear. Moreover, our previous integrated persistent feature (IPF) works well on an rs-fMRI cohort while it has not yet been studied on metabolic brain networks. To address these issues, we propose a novel univariate network measurement, kernel-based IPF (KBI), based on the prior IPF, to quantify the difference between IPF curves. In our experiments, we apply the KBI index to study fluorodeoxyglucose positron emission tomography (FDG-PET) imaging data from 140 subjects with Alzheimer's disease (AD), 280 subjects with mild cognitive impairment (MCI), and 280 healthy normal controls (NC). The results show the disruption of network integration in the progress of AD. Compared to previous persistent homology-based measures, as well as other standard graph-based measures that characterize small-world organization and modular structure, our proposed network index KBI possesses more significant group difference and better classification performance, suggesting that it may be used as an effective preclinical AD imaging biomarker.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Metabolic Networks and Pathways , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Female , Fluorodeoxyglucose F18/administration & dosage , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography
7.
Hum Brain Mapp ; 40(4): 1062-1081, 2019 03.
Article in English | MEDLINE | ID: mdl-30569583

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia in the elderly with no effective treatment currently. Recent studies of noninvasive neuroimaging, resting-state functional magnetic resonance imaging (rs-fMRI) with graph theoretical analysis have shown that patients with AD and mild cognitive impairment (MCI) exhibit disrupted topological organization in large-scale brain networks. In previous work, it is a common practice to threshold such networks. However, it is not only difficult to make a principled choice of threshold values, but also worse is the discard of potential important information. To address this issue, we propose a threshold-free feature by integrating a prior persistent homology-based topological feature (the zeroth Betti number) and a newly defined connected component aggregation cost feature to model brain networks over all possible scales. We show that the induced topological feature (Integrated Persistent Feature) follows a monotonically decreasing convergence function and further propose to use its slope as a concise and persistent brain network topological measure. We apply this measure to study rs-fMRI data from the Alzheimer's Disease Neuroimaging Initiative and compare our approach with five other widely used graph measures across five parcellation schemes ranging from 90 to 1,024 region-of-interests. The experimental results demonstrate that the proposed network measure shows more statistical power and stronger robustness in group difference studies in that the absolute values of the proposed measure of AD are lower than MCI and much lower than normal controls, providing empirical evidence for decreased functional integration in AD dementia and MCI.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Models, Neurological , Neuroimaging/methods , Aged , Alzheimer Disease/physiopathology , Brain/physiopathology , Female , Humans , Male , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Rest
SELECTION OF CITATIONS
SEARCH DETAIL
...