Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-36757814

ABSTRACT

Major depressive disorder is a common and devastating psychiatric disease, and the prevalence and burden are substantially increasing worldwide. Multiple studies of depression patients have implicated glucose metabolic dysfunction in the pathophysiology of depression. However, the molecular mechanisms by which glucose and related metabolic pathways modulate depressive-like behaviors are largely uncharacterized. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a donor molecule for O-GlcNAcylation. O-GlcNAc transferase (OGT), a key enzyme in protein O-GlcNAcylation, catalyzes protein posttranslational modification by O-GlcNAc and acts as a stress sensor. Here, we show that Ogt mRNA was increased in depression patients and that astroglial OGT expression was specifically upregulated in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social-defeat stress. The selective deletion of astrocytic OGT resulted in antidepressant-like effects, and moreover, astrocytic OGT in the mPFC bidirectionally regulated vulnerability to social stress. Furthermore, OGT modulated glutamatergic synaptic transmission through O-GlcNAcylation of glutamate transporter-1 (GLT-1) in astrocytes. OGT astrocyte-specific knockout preserved the neuronal morphology atrophy and Ca2+ activity deficits caused by chronic stress and resulted in antidepressant effects. Our study reveals that astrocytic OGT in the mPFC regulates depressive-like behaviors through the O-GlcNAcylation of GLT-1 and could be a potential target for antidepressants.


Subject(s)
Astrocytes , Depressive Disorder, Major , Mice , Animals , Astrocytes/metabolism , Depression/genetics , Synaptic Transmission , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Antidepressive Agents , Glucose , Acetylglucosamine/metabolism
2.
Theranostics ; 12(8): 3703-3718, 2022.
Article in English | MEDLINE | ID: mdl-35664080

ABSTRACT

Rationale: Stress is a major risk factor for the development of depression. However, the underlying molecular mechanisms of stress vulnerability in depression are largely uncharacterized. Methods: P2X2 receptors (a major receptor for gliotransmitter-ATP) in the medial prefrontal cortex (mPFC) were identified by real-time qPCR, western blots and RNAscope in situ hybridization in chronic social defeat stress model (CSDS). We generated P2X2 conditional knockout mice and overexpressed AAV-P2X2 in CamkIIα-Cre mice. The depression-like behaviors were assessed via CSDS, subthreshold social defeat stress (SSDS), social interaction test (SI), forced interaction test (FIT), forced swimming test (FST), sucrose preference test (SPT), novel stressed feeding (NSF) and open field test (OFT). The neuronal activity and synapse function of P2X2 receptors in the mPFC were detected by in vivo fiber-photometry, patch-clamp techniques and neuronal morphometric analysis. Results: We identified that P2X2 receptors were increased in the mPFC of susceptible mice in CSDS. Conditional knockout of P2X2 receptors in pyramidal neurons promoted resilience of chronic stress-induced depressive-like behaviors, whereas pyramidal neurons - specific gain of P2X2 in the mPFC increased vulnerability to depressive-like behaviors. In vivo fiber-photometry, electrophysiology and neuronal morphometric analysis showed P2X2 receptors regulated neuronal activity and synapse function in the mPFC. Conclusions: Overall, our studies reveal a critical role of P2X2 in mediating vulnerability to chronic stress and identify P2X2 as a potential therapeutic target for treatment of stress-related mood disorders.


Subject(s)
Pyramidal Cells , Stress, Psychological , Animals , Mice , Mice, Inbred C57BL , Neurons , Receptors, Purinergic P2X2
3.
Dev Neurobiol ; 77(12): 1430-1441, 2017 12.
Article in English | MEDLINE | ID: mdl-29057625

ABSTRACT

The α2-glycine receptors (GlyRs) play important roles during early central nervous system development. However, these receptors' possible involvement in neurodevelopmental events occurring in the adult brain remains to be explored. Adult hippocampal neurogenesis (AHN) is the process by which new granule cell neurons are added to the dentate gyrus (DG) throughout adulthood. In this study, we observed that hippocampal adult neural stem cells (ANSCs) express α2-containing GlyRs. Pharmacological inhibition of GlyRs by strychnine or picrotoxin decreased the proliferation of ANSCs, both in vivo and in vitro. Mice knockout for glra2, the gene coding for the GlyR α2 subunit, were determined to display impaired AHN, and this phenomenon was accompanied by deficits in spatial memory. These results, which reveal neurodevelopmental roles for α2-GlyRs in the adult brain, may be clinically relevant, given that a mutation in GLAR2, as well as AHN impairments, have been reported in autism spectrum disorder. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1430-1441, 2017.


Subject(s)
Hippocampus/cytology , Neurogenesis/genetics , Neurons/metabolism , Receptors, Glycine/metabolism , Spatial Memory/physiology , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Exploratory Behavior , Female , GABA-A Receptor Antagonists/pharmacology , Glycine Agents/pharmacology , Male , Maze Learning , Memory Disorders/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nestin/genetics , Nestin/metabolism , Picrotoxin/analogs & derivatives , Picrotoxin/pharmacology , Rats , Rats, Inbred F344 , Receptors, Glycine/genetics , Sesterterpenes , Strychnine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...