Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(22): 8404-8413, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38846379

ABSTRACT

The capability of organic emitters to harvest triplet excitons via a thermally activated delayed fluorescence (TADF) process has opened a new era in organic optoelectronics. Nevertheless, low brightness, and consequently an insufficient roll-off ratio, constitutes a bottleneck for their practical applications in the domain of organic light-emitting diodes (OLEDs). To address this formidable challenge, we developed a new design of desymmetrized naphthalimide (NMI) featuring an annulated indole with a set of auxiliary donors on its periphery. Their perpendicular arrangement led to minimized HOMO-LUMO overlap, resulting in a low energy gap (ΔE ST = 0.05-0.015 eV) and efficient TADF emission with a photoluminescence quantum yield (PLQY) ranging from 82.8% to 95.3%. Notably, the entire set of dyes (NMI-Ind-TBCBz, NMI-Ind-DMAc, NMI-Ind-PXZ, and NMI-Ind-PTZ) was utilized to fabricate TADF OLED devices, exhibiting yellow to red electroluminescence. Among them, red-emissive NMI-Ind-PTZ, containing phenothiazine as an electron-rich component, revealed predominant performance with a maximum external quantum efficiency (EQE) of 23.6%, accompanied by a persistent luminance of 38 000 cd m-2. This results in a unique roll-off ratio (EQE10 000 = 21.6%), delineating a straightforward path for their commercial use in lighting and display technologies.

2.
J Am Chem Soc ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847558

ABSTRACT

Redox-inactive metal ions are essential in modulating the reactivity of various oxygen-containing metal complexes and metalloenzymes, including photosystem II (PSII). The heart of this unique membrane-protein complex comprises the Mn4CaO5 cluster, in which the Ca2+ ion acts as a critical cofactor in the splitting of water in PSII. However, there is still a lack of studies involving Ca-based reactive oxygen species (ROS) systems, and the exact nature of the interaction between the Ca2+ center and ROS in PSII still generates intense debate. Here, harnessing a novel Ca-TEMPO complex supported by the ß-diketiminate ligand to control the activation of O2, we report the isolation and structural characterization of hitherto elusive Ca peroxides, a homometallic Ca hydroperoxide and a heterometallic Ca/K peroxide. Our studies indicate that the presence of K+ cations is a key factor controlling the outcome of the oxygenation reaction of the model Ca-TEMPO complex. Combining experimental observations with computational investigations, we also propose a mechanistic rationalization for the reaction outcomes. The designed approach demonstrates metal-TEMPO complexes as a versatile platform for O2 activation and advances the understanding of Ca/ROS systems.

3.
Chemistry ; : e202401968, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801170

ABSTRACT

Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.

4.
Article in English | MEDLINE | ID: mdl-38668584

ABSTRACT

Despite the design and proposal of several new structural motifs as thermally activated delayed fluorescent (TADF) emitters for organic light-emitting device (OLED) applications, the nature of their interaction with the host matrix in the emissive layer of the device and their influence on observed photophysical outputs remain unclear. To address this issue, we present, for the first time, the use of up to four regioisomers bearing a donor-acceptor-donor electronic structure based on the desymmetrized naphthalene benzimidazole scaffold, equipped with various electron-donating units and possessing distinguished conformational lability. Quantum chemical calculations allow us to identify the most favorable conformations adopted by the electron-rich groups across the entire pool of regioisomers. These conformations were then compared with conformational changes caused by the interaction of the emitter with the Zeonex and 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) matrices, and the correlation with observed photophysics was monitored by UV-vis absorption and steady-state photoluminescence spectra, combined with time-resolved spectroscopic techniques. Importantly, a CBP matrix was found to have a significant impact on the conformational change of regioisomers, leading to unique TADF emission mechanisms that encompass dual emission and inversion of the singlet-triplet excited-state energies and result in the enhancement of TADF efficiency. As a proof of concept, regioisomers with optimal donor positions were utilized to fabricate an OLED, revealing, with the best-performing dye, an external quantum emission of 11.6%, accompanied by remarkable luminance (28,000 cd/m2). These observations lay the groundwork for a better understanding of the role of the host matrix. In the long term, this new knowledge can lead to predicting the influence of the host matrix and adopting the structure of the emitter in a way that allows the development of highly efficient and efficient OLEDs.

5.
ACS Appl Mater Interfaces ; 15(31): 37728-37740, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37501285

ABSTRACT

Despite promising optoelectronic features of N-doped polycyclic aromatic hydrocarbons (PAHs), their use as functional materials remains underdeveloped due to their limited post-functionalization. Facing this challenge, a novel design of N-doped PAHs with D-A-D electronic structure for thermally activated delayed fluorescence (TADF) emitters was performed. Implementing a set of auxiliary donors at the meta position of the protruding phenyl ring of quinoxaline triggers an increase in the charge-transfer property simultaneously decreasing the delayed fluorescence lifetime. This, in turn, contributes to a narrow (0.04-0.28 eV) singlet-triplet exchange energy split (ΔEST) and promotes a reverse intersystem crossing transition that is pivotal for an efficient TADF process. Boosting the electron-donating ability of our N-PAH scaffold leads to excellent photoluminescence quantum yield that was found in a solid-state matrix up to 96% (for phenoxazine-substituted derivatives, under air) with yellow or orange-red emission, depending on the specific compound. Organic light-emitting diodes (OLEDs) utilizing six, (D-A)-D, N-PAH emitters demonstrate a significant throughput with a maximum external quantum efficiency of 21.9% which is accompanied by remarkable luminance values which were found for all investigated devices in the range of 20,000-30,100 cd/m2 which is the highest reported to date for N-doped PAHs investigated in the OLED domain.

6.
J Chem Theory Comput ; 19(13): 4023-4032, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37338422

ABSTRACT

The domain-based local pair natural orbital (PNO) coupled-cluster DLPNO-CCSD(T) method has been proven to provide accurate single-point energies at a fraction of the cost of canonical CCSD(T) calculations. However, the desired "chemical accuracy" can only be obtained with a large PNO space and extended basis set. We present a simple yet accurate and efficient correction scheme based on a perturbative approach. Here, in addition to DLPNO-CCSD(T) energy, one calculates DLPNO-MP2 correlation energy with the same settings as in the preceding coupled-cluster calculation. In the next step, the canonical MP2 correlation energy is obtained in the same orbital basis. This can be efficiently performed for essentially all molecule sizes accessible with the DLPNO-CCSD(T) method. By taking the difference between the canonical MP2 and DLPNO-MP2 energies, we obtain a correction term that can be added to the DLPNO-CCSD(T) correlation energy. This way, one can obtain the total correlation energy close to the limit of the complete PNO space (cPNO). The presented approach allows us to significantly increase the accuracy of the DLPNO-CCSD(T) method for both closed- and open-shell systems. The latter are known to be especially challenging for locally correlated methods. Unlike the previously developed PNO extrapolation procedure by Altun, Neese, and Bistoni ( J. Chem. Theory Comput. 2020, 16, 6142-6149), this strategy allows us to get the DLPNO-CCSD(T) correlation energy at the cPNO limit in a cost-efficient way, resulting in a minimal overall increase in calculation time as compared to the uncorrected method.

7.
Sci Total Environ ; 879: 162622, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36878296

ABSTRACT

C5- and C6- unsaturated oxygenated organic compounds emitted by plants under stress like cutting, freezing or drying, known as Green Leaf Volatiles (GLVs), may clear some of the existing uncertainties in secondary organic aerosol (SOA) budget. The transformations of GLVs are a potential source of SOA components through photo-oxidation processes occurring in the atmospheric aqueous phase. Here, we investigated the aqueous photo-oxidation products from three abundant GLVs (1-penten-3-ol, (Z)-2-hexen-1-ol, and (E)-2-hexen-1-al) induced by OH radicals, carried out in a photo-reactor under simulated solar conditions. The aqueous reaction samples were analyzed using advanced hyphenated mass spectrometry techniques: capillary gas chromatography mass spectrometry (c-GC-MS); and reversed-phase liquid chromatography high resolution mass spectrometry (LC-HRMS). Using carbonyl-targeted c-GC-MS analysis, we confirmed the presence of propionaldehyde, butyraldehyde, 1-penten-3-one, and 2-hexen-1-al in the reaction samples. The LC-HRMS analysis confirmed the presence of a new carbonyl product with the molecular formula C6H10O2, which probably bears the hydroxyhexenal or hydroxyhexenone structure. Density functional theory (DFT)-based quantum calculations were used to evaluate the experimental data and obtain insight into the formation mechanism and structures of the identified oxidation products via the addition and hydrogen-abstraction pathways. DFT calculations highlighted the importance of the hydrogen abstraction pathway leading to the new product C6H10O2. Atmospheric relevance of the identified products was evaluated using a set of physical property data like Henry's law constant (HLC) and vapor pressure (VP). The unknown product of molecular formula C6H10O2 has higher HLC and lower VP than the parent GLV and thus has potential to remain in the aqueous phase leading to possible aqueous SOA formation. Other observed carbonyl products are likely first stage oxidation products and precursors of aged SOA.

8.
Chem Commun (Camb) ; 59(19): 2815-2818, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36790367

ABSTRACT

We report the synthesis and characterization of a series of donor-acceptor TADF emitters with a new architecture, where the donor moiety and the dibenzazepine-based acceptor moiety are separated by a phenylene linker in a V-shaped spatial arrangement. Such spatial separation and electronic decoupling between the donor and the acceptor moieties leads to low singlet-triplet energy gaps and favors efficient exciton up-conversion.

9.
Proc Natl Acad Sci U S A ; 119(45): e2213911119, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36322748

ABSTRACT

For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all-trans-retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11-cis-retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography-mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of N-retinylidene-phosphatidylethanolamine (N-ret-PE) adducts with the released all-trans-retinal, and the reduction of all-trans-retinal to all-trans-retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all-trans-retinal. In the absence of NADPH, free all-trans-retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of N-ret-PE (∼40% of total all-trans-retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, N-ret-PE formation was highly attenuated by NADPH-dependent reduction of all-trans-retinal to all-trans-retinol. Neither N-ret-PE formation nor all-trans-retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all-trans-retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies.


Subject(s)
Retinaldehyde , Rhodopsin , Rhodopsin/metabolism , Retinaldehyde/chemistry , Vitamin A , Hydrolysis , NADP
10.
Chem Sci ; 13(34): 10119-10128, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128243

ABSTRACT

Hyperfluorescence (HF), a relatively new phenomenon utilizing the transfer of excitons between two luminophores, requires careful pairwise tuning of molecular energy levels and is proposed to be the crucial step towards the development of new, highly effective OLED systems. To date, barely few HF yellow emitters with desired narrowband emission but moderate external quantum efficiency (EQE < 20%) have been reported. This is because a systematic strategy embracing both Förster resonance energy transfer (FRET) and triplet to singlet (TTS) transition as complementary mechanisms for effective exciton transfer has not yet been proposed. Herein, we present a rational approach, which allows, through subtle structural modification, a pair of compounds built from the same donor and acceptor subunits, but with varied communication between these ambipolar fragments, to be obtained. The TADF-active dopant is based on a naphthalimide scaffold linked to the nitrogen of a carbazole moiety, which through the introduction of an additional bond leads not only to π-cloud enlargement, but also rigidifies and inhibits the rotation of the donor. This structural change prevents TADF, and guides bandgaps and excited state energies to simultaneously pursue FRET and TTS processes. New OLED devices utilizing the presented emitters show excellent external quantum efficiency (up to 27%) and a narrow full width at half maximum (40 nm), which is a consequence of very good alignment of energy levels. The presented design principles prove that only a minor structural modification is needed to obtain commercially applicable dyes for HF OLED devices.

11.
Sci Rep ; 12(1): 13420, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927398

ABSTRACT

Two graphene oxide nanoassemblies using 5-(4-(aminophenyl)-10,15,20-triphenylporphyrin (TPPNH2) were fabricated by two synthetic methods: covalent (GO-CONHTPP) and noncovalent bonding. GO-CONHTPP was achieved through amide formation at the periphery of GO sheets and the hybrid material was fully characterized by FTIR, XPS, Raman spectroscopy, and SEM. Spectroscopic measurements together with theoretical calculations demonstrated that assembling TPPNH2 on the GO surface in DMF-H2O (1:2, v/v) via non-covalent interactions causes changes in the absorption spectra of porphyrin, as well as efficient quenching of its emission. Interestingly, covalent binding to GO does not affect notably neither the porphyrin absorption nor its fluorescence. Theoretical calculations indicates that close proximity and π-π-stacking of the porphyrin molecule with the GO sheet is possible only for the non-covalent functionalization. Femtosecond pump-probe experiments revealed that only the non-covalent assembly of TPPNH2 and GO enhances the efficiency of the photoinduced electron transfer from porphyrin to GO. In contrast to the non-covalent hybrid, the covalent GO-CONHTPP material can generate singlet oxygen with quantum yields efficiency (ΦΔ = 0.20) comparable to that of free TPPNH2 (ΦΔ = 0.26), indicating the possible use of covalent hybrid materials in photodynamic/photothermal therapy. The spectroscopic studies combined with detailed quantum-chemical analysis provide invaluable information that can guide the fabrication of hybrid materials with desired properties for specific applications.

12.
Phys Chem Chem Phys ; 24(30): 18103-18118, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35880631

ABSTRACT

Furylfulgides, a class of photochromic organic compounds, show a complex system of photoinduced reactions. In the present study, the excited-state dynamics of the Eα and Eß isomers of a representative furylfulgide is modelled with the use of nonadiabatic molecular dynamics simulations. Moreover, a pattern recognition algorithm is employed in order to automatically identify relaxation pathways, and to quantify the photoproduct distributions. The simulation results indicate that, despite differing only in the orientation of the furyl group, the two isomers show markedly different photochemical behaviour. The predominant Eα isomer undergoes photocyclisation with a quantum yield (QY) of 0.27 ± 0.10. For this isomer, the undesired E → Z photoisomerisation around the central double bond represents a minor side reaction, with a QY of 0.09 ± 0.07. In contrast, the minority Eß isomer, which is incapable of photocyclisation, undergoes efficient E → Z photoisomerisation, with a QY as high as 0.56 ± 0.14. The relaxation kinetics and the photoproduct distributions are interpreted in the light of the available experimental data.

13.
Chemistry ; 28(40): e202200620, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35416351

ABSTRACT

Paddlewheel-type binuclear complexes featuring metal-metal bonding have been the subject of widespread interest due to fundamental concern in their electronic structures and potential applications. Here, we explore the molecular and electronic structures of diiron(II,II) complexes with N,N'-diarylformamidinate ligands. While a paddlewheel-type diiron(II,II) complex with N,N'-diphenylformamidinate ligands (DPhF) exhibits the centrosymmetric [Fe2 (µ-DPhF)4 ] structure, a minor alteration in the ligand system, i. e., switching from phenyl to p-tolyl N-substituted formamidinate ligand (DTolF), resulted in the isolation of an unprecedented non-centrosymmetric [Fe(µ-DTolF)3 Fe(κ2 -DTolF)] complex. Both complexes were characterized using single-crystal X-ray diffraction, magnetic measurements, 57 Fe Mössbauer spectroscopy, and cyclic voltammetry along with high-level ab-initio calculations. The results provide a new view on a range of factors controlling the ground-state electronic configuration and structural diversity of homoleptic diiron(II,II) complexes. Model calculations determined that the Mayer bond orders for Fe-Fe interactions are significantly lower than 1 and equal to 0.15 and 0.28 for [Fe2 (µ-DPhF)4 ] and [Fe(µ-DTolF)3 Fe(κ2 -DTolF)], respectively.


Subject(s)
Electronics , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure , Spectroscopy, Mossbauer
14.
Angew Chem Int Ed Engl ; 61(27): e202202232, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35348258

ABSTRACT

Although bowl-shaped N-pyrrolic polycyclic aromatic hydrocarbons (PAHs) can achieve excellent electron-donating ability, their application for optoelectronics is hampered by typically low photoluminescence quantum yields (PLQYs). To address this issue, we report the synthesis and characterization of a series of curved and fully conjugated nitrogen-doped PAHs. Through structural modifications to the electron-accepting moiety, we are able to switch the mechanism of luminescence between thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP), and to tune the overall PLQY in the range from 9 % to 86 %. As a proof of concept, we constructed solid-state organic light-emitting diode (OLED) devices, which has not been explored to date in the context of concave N-doped systems being TADF/RTP emitters. The best-performing dye, possessing a peripheral trifluoromethyl group adjacent to the phenazine acceptor, exhibits yellow to orange emission with a maximum external quantum efficiency (EQE) of 12 %, which is the highest EQE in a curved D-A embedded N-PAH to date.

15.
J Chem Phys ; 155(23): 234115, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34937363

ABSTRACT

A new molecular dataset called HAB79 is introduced to provide ab initio reference values for electronic couplings (transfer integrals) and to benchmark density functional theory (DFT) and density functional tight-binding (DFTB) calculations. The HAB79 dataset is composed of 79 planar heterocyclic polyaromatic hydrocarbon molecules frequently encountered in organic (opto)electronics, arranged to 921 structurally diverse dimer configurations. We show that CASSCF/NEVPT2 with a minimal active space provides a robust reference method that can be applied to the relatively large molecules of the dataset. Electronic couplings are largest for cofacial dimers, in particular, sulfur-containing polyaromatic hydrocarbons, with values in excess of 0.5 eV, followed by parallel displaced cofacial dimers. V-shaped dimer motifs, often encountered in the herringbone layers of organic crystals, exhibit medium-sized couplings, whereas T-shaped dimers have the lowest couplings. DFT values obtained from the projector operator-based diabatization (POD) method are initially benchmarked against the smaller databases HAB11 (HAB7-) and found to systematically improve when climbing Jacob's ladder, giving mean relative unsigned errors (MRUEs) of 27.7% (26.3%) for the generalized gradient approximation (GGA) functional BLYP, 20.7% (15.8%) for hybrid functional B3LYP, and 5.2% (7.5%) for the long-range corrected hybrid functional omega-B97X. Cost-effective POD in combination with a GGA functional and very efficient DFTB calculations on the dimers of the HAB79 database give a good linear correlation with the CASSCF/NEVPT2 reference data, which, after scaling with a multiplicative constant, gives reasonably small MRUEs of 17.9% and 40.1%, respectively, bearing in mind that couplings in HAB79 vary over 4 orders of magnitude. The ab initio reference data reported here are expected to be useful for benchmarking other DFT or semi-empirical approaches for electronic coupling calculations.

16.
Chemistry ; 27(66): 16477-16487, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34606111

ABSTRACT

N-heterocyclic carbene ligands (NHC) are widely utilized in catalysis and material science. They are characterized by their steric and electronic properties. Steric properties are usually quantified on the basis of their static structure, which can be determined by X-ray diffraction. The electronic properties are estimated in the liquid state; for example, via the 77 Se liquid state NMR of Se-NHC adducts. We demonstrate that 77 Se NMR crystallography can contribute to the characterization of the structural and electronic properties of NHC in solid and liquid states. Selected Se-NHC adducts are investigated via 77 Se solid state NMR and X-ray crystallography, supported by quantum chemical calculations. This investigation reveals a correlation between the molecular structure of adducts and NMR parameters, including not only isotropic chemical shifts but also the other chemical shift tensor components. Afterwards, the liquid state 77 Se NMR data is presented and interpreted in terms of the quantum chemistry modelling. The discrepancy between the structural and electronic properties, and in particular the π-accepting abilities of adducts in the solid and liquid states is discussed. Finally, the 13 C isotropic chemical shift from the liquid state NMR and the 13 C tensor components are also discussed, and compared with their 77 Se counterparts. 77 Se NMR crystallography can deliver valuable information about NHC ligands, and together with liquid state 77 Se NMR can provide an in-depth outlook on the properties of NHC ligands.

17.
J Phys Chem A ; 125(39): 8635-8648, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34550700

ABSTRACT

4-(N,N-Dimethylamino)benzonitrile (DMABN) is a well-known model compound for dual fluorescence-in sufficiently polar solvents, it exhibits two distinct fluorescence emission bands. The interpretation of its transient absorption (TA) spectrum in the visible range is the subject of a long-standing controversy. In the present study, we resolve this issue by calculating the TA spectrum on the basis of nonadiabatic molecular dynamics simulations. An unambiguous assignment of spectral signals to specific excited-state structures is achieved by breaking down the calculated spectrum into contributions from twisted and nontwisted molecular geometries. In particular, the much-discussed excited-state absorption band near 1.7 eV (ca. 700 nm) is attributed to the near-planar locally excited (LE) minimum on the S1 state. On the technical side, our study demonstrates that the second-order approximate coupled cluster singles and doubles (CC2) method can be used successfully to calculate the TA spectra of moderately large organic molecules, provided that the system in question does not approach a crossing between the lowest excited state and the singlet ground state within the time frame of the simulation.

18.
J Phys Chem A ; 125(38): 8358-8372, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34546761

ABSTRACT

The compound 9-cis-retinyl acetate (9-cis-RAc) is a precursor to 9-cis-retinal, which has potential application in the treatment of some hereditary diseases of the retina. An attractive synthetic route to 9-cis-RAc is based on the photoisomerization reaction of the readily available all-trans-RAc. In the present study, we examine the mechanism of the photoisomerization reaction with the use of state-of-the-art electronic structure calculations for two polyenic model compounds: tEtEt-octatetraene and tEtEtEc-2,6-dimethyl-1,3,5,7,9-decapentaene. The occurrence of photoisomerization is attributed to a chain-kinking mechanism, whereby a series of S1/S0 conical intersections associated with kinking deformations at different positions along the polyenic chain mediate internal conversion to the S0 state, and subsequent isomerization around one of the double bonds. Two other possible photoisomerization mechanisms are taken into account, but they are rejected as incompatible with simulation results and/or the available spectroscopic data.


Subject(s)
Density Functional Theory , Diterpenes/chemistry , Retinyl Esters/chemistry , Isomerism , Molecular Structure , Photochemical Processes
19.
J Med Chem ; 64(12): 8287-8302, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34081480

ABSTRACT

Recycling of all-trans-retinal to 11-cis-retinal through the visual cycle is a fundamental metabolic pathway in the eye. A potent retinoid isomerase (RPE65) inhibitor, (R)-emixustat, has been developed and tested in several clinical trials; however, it has not received regulatory approval for use in any specific retinopathy. Rapid clearance of this drug presents challenges to maintaining concentrations in eyes within a therapeutic window. To address this pharmacokinetic inadequacy, we rationally designed and synthesized a series of emixustat derivatives with strategically placed fluorine and deuterium atoms to slow down the key metabolic transformations known for emixustat. Crystal structures and quantum chemical analysis of RPE65 in complex with the most potent emixustat derivatives revealed the structural and electronic bases for how fluoro substituents can be favorably accommodated within the active site pocket of RPE65. We found a close (∼3.0 Å) F-π interaction that is predicted to contribute ∼2.4 kcal/mol to the overall binding energy.


Subject(s)
Eye/metabolism , Phenyl Ethers/pharmacokinetics , Propanolamines/pharmacokinetics , Amine Oxidase (Copper-Containing)/metabolism , Animals , Cattle , Cell Adhesion Molecules/metabolism , Crystallography, X-Ray , Deuterium/chemistry , Drug Design , Fluorine/chemistry , Halogenation , Mice , Molecular Structure , Phenyl Ethers/chemical synthesis , Phenyl Ethers/metabolism , Propanolamines/chemical synthesis , Propanolamines/metabolism , Protein Binding , Structure-Activity Relationship , cis-trans-Isomerases/metabolism
20.
Sci Rep ; 11(1): 7977, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846412

ABSTRACT

Graphene-based nanohybrids are good candidates for various applications. However, graphene exhibits some unwanted features such as low solubility in an aqueous solution or tendency to aggregate, limiting its potential applications. On the contrary, its derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), have excellent properties and can be easily produced in large quantities. GO/RGO nanohybrids with porphyrins were shown to possess great potential in the field of photocatalytic hydrogen production, pollutant photodegradation, optical sensing, or drug delivery. Despite the rapid progress in experimental research on the porphyrin-graphene hybrids some fundamental questions about the structures and the interaction between components in these systems still remain open. In this work, we combine detailed experimental and theoretical studies to investigate the nature of the interaction between the GO/RGO and two metal-free porphyrins 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin (TPPH)]. The two porphyrins form stable nanohybrids with GO/RGO support, although both porphyrins exhibited a slightly higher affinity to RGO. We validated finite, Lerf-Klinowski-type (Lerf et al. in J Phys Chem B 102:4477, 1998) structural models of GO ([Formula: see text]) and RGO ([Formula: see text]) and successfully used them in ab initio absorption spectra simulations to track back the origin of experimentally observed spectral features. We also investigated the nature of low-lying excited states with high-level wavefunction-based methods and shown that states' density becomes denser upon nanohybrid formation. The studied nanohybrids are non-emissive, and our study suggests that this is due to excited states that gain significant charge-transfer character. The presented efficient simulation protocol may ease the properties screening of new GO/RGO-nanohybrids.

SELECTION OF CITATIONS
SEARCH DETAIL
...