Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38473620

ABSTRACT

CuO-loaded TiO2 nanomaterials have applications in pollutant degradation via photocatalysis. However, the existing methods of fabricating these nanomaterials involve liquid-phase processes, which require several steps and typically generate liquid waste. In this study, TiO2 and TiO2-CuO nanoparticulate thin films were successfully fabricated through a one-step gas-phase approach involving a combination of plasma-enhanced chemical vapor deposition and physical vapor deposition. The resulting films consisted of small, spherical TiO2 nanoparticles with observable CuO on the TiO2 surface. Upon annealing in air, the TiO2 nanoparticles were crystallized, and CuO was completely oxidized. The photocatalytic activity of TiO2-CuO/H2O2, when introduced into the rhodamine 6G degradation system, was substantially enhanced under both ultraviolet and visible light irradiation. Moreover, this study highlights the influence of pH on the photocatalytic activity; TiO2-CuO/H2O2 exhibited the highest photocatalytic activity at pH 13, with a reaction rate constant of 0.99 h-1 cm-2 after 180 min of visible light irradiation. These findings could facilitate the development of nanoparticulate thin films for enhanced pollutant degradation in wastewater treatment.

2.
Materials (Basel) ; 16(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570125

ABSTRACT

We prepared HKUST-1 (Cu3BTC2; BTC3- = 1,3,5-benzenetricarboxylate) using a spray synthesis method with Li doping and defect created via partial replacement of H3BTC with isophthalic acid (IP) to enhance the H2 adsorption capacity. Li-doping was performed by incorporating LiNO3 in HKUST-1 via spray synthesis and subsequent thermal treatment for decomposing NO3-, which enhances H2 uptake at 77 K and 1 bar per unit mass and per unit area from 2.37 wt% and 4.16 molecules/nm2 for undoped HKUST-1 to 2.47 wt% and 4.33 molecules/nm2, respectively. Defect creation via the replacement of the BTC3- linker with the IP2- linker slightly in HKUST-1 skeleton did not affect H2 uptake. Both Li-doping and defect creation significantly enhanced H2 uptake to 3.03 wt%, which was caused by the coordination of Li ions with free carboxylic groups of the created defects via IP replacement.

3.
Langmuir ; 39(13): 4571-4582, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36944197

ABSTRACT

Hollow mesoporous nanoparticles with controllable size (less than 100 nm) are desired as drug-delivery carriers. Herein, we report the synthesis of monodispersed hollow mesoporous organosilica (HMOS) and hollow mesoporous silica (HMS) nanoparticles using soft and hard templating methods. HMOS shells, with 1,2-bis(triethoxysilyl)ethane (BTEE) as the precursor and hexadecyltrimethylammonium bromide and sodium dodecyl sulfate (SDS) as the soft templates, were formed on monodispersed silica nanoparticles (SNPs), which were used as the hard templates. HMOS and HMS nanoparticles were obtained by removing the SNPs after three rounds of ammonia dialysis. The hollow size of HMOS can be tuned by changing the size of the SNPs. By using SNPs with a size of 36.5 nm, hollow spaces of approximately 20 nm connected the surface through narrow pores (<5 nm). Mesopores of approximately 12 nm were formed by the surfactant micelles. Additionally, the interparticle space in HMOS and HMS was approximately 12 nm. The shell thicknesses of HMOS and HMS could be tuned in the range of 5-9 nm by changing the BTEE amount. Moreover, the amount of surfactant used varied the porous structure. The HMOS with a thickness of 5 nm exhibited a Brunauer-Emmett-Teller (BET) surface area of 268 m2/g and a total pore volume of 1.14 cm3/g. Meanwhile, HMS demonstrated a BET surface area of 553 m2/g and a total pore volume of 1.82 cm3/g while maintaining a hollow structure. HMOS displayed a high loading capacity for ibuprofen (3009 mg/g), and its drug release system showed a sustained-release property. Therefore, the HMOS preparation using hard and soft templates proposed herein can control the hollow size and shell thickness for drug-delivery applications.

4.
J Occup Health ; 64(1): e12367, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36366872

ABSTRACT

OBJECTIVES: We conducted inhalation and intratracheal instillation studies in order to examine the effects of tungsten trioxide (WO3 ) nanoparticles on the lung, and evaluated whether or not the nanoparticles would cause persistent lung inflammation. METHODS: In the inhalation study, male 10-week-old Fischer 334 rats were classified into 3 groups. The control, low-dose, and high-dose groups inhaled clean air, 2, and 10 mg/m3 WO3 nanoparticles, respectively, for 6 h each day for 4 weeks. The rats were dissected at 3 days, 1 month, and 3 months after the inhalation, and the bronchoalveolar lavage fluid (BALF) and lung tissue were examined. In the intratracheal instillation study, male 12-week-old Fischer 334 rats were divided into 3 subgroups. The control, low-dose, and high-dose groups were intratracheally instilled 0.4 ml distilled water, 0.2, and 1.0 mg WO3 nanoparticles, respectively, dissolved in 0.4 ml distilled water. The rats were sacrificed at 3 days, 1 week, and 1 month after the intratracheal instillation, and the BALF and lung tissue were analyzed as in the inhalation study. RESULTS: The inhalation and instillation of WO3 nanoparticles caused transient increases in the number and rate of neutrophils, cytokine-induced neutrophil chemoattractant (CINC)-1, and CINC-2 in BALF, but no histopathological changes or upregulation of heme oxygenase (HO)-1 in the lung tissue. CONCLUSION: Our results suggest that WO3 nanoparticles have low toxicity to the lung. According to the results of the inhalation study, we also propose that the no observed adverse effect level (NOAEL) of WO3 nanoparticles is 2 mg/m3 .


Subject(s)
Lung , Nanoparticles , Male , Rats , Animals , Bronchoalveolar Lavage Fluid , Nanoparticles/toxicity , Rats, Inbred F344 , Water
5.
Nanomaterials (Basel) ; 10(8)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784876

ABSTRACT

This work determines whether cytokine-induced neutrophil chemoattractants (CINC)-1, CINC-2 and CINC-3 can be markers for predicting high or low pulmonary toxicity of nanomaterials (NMs). We classified NMs of nickel oxide (NiO) and cerium dioxide (CeO2) into high toxicity and NMs of two types of titanium dioxides (TiO2 (P90 and rutile)) and zinc oxide (ZnO) into low toxicity, and we analyzed previous data of CINCs in bronchoalveolar lavage fluid (BALF) of rats from three days to six months after intratracheal instillation (0.2 and 1.0 mg) and inhalation exposure (0.32-10.4 mg/m3) of materials (NiO, CeO2, TiO2 (P90 and rutile), ZnO NMs and micron-particles of crystalline silica (SiO2)). The concentration of CINC-1 and CINC-2 in BALF had different increase tendency between high and low pulmonary toxicity of NMs and correlated with the other inflammatory markers in BALF. However, CINC-3 increased only slightly in a dose-dependent manner compared with CINC-1 and CINC-2. Analysis of receiver operating characteristics for the toxicity of NMs by CINC-1 and CINC-2 showed the most accuracy of discrimination of the toxicity at one week or one month after exposure and CINC-1 and CINC-2 in BALF following intratracheal instillation of SiO2 as a high toxicity could accurately predict the toxicity at more than one month after exposure. These data suggest that CINC-1 and CINC-2 may be useful biomarkers for the prediction of pulmonary toxicity of NMs relatively early in both intratracheal instillation and inhalation exposure.

6.
Langmuir ; 36(10): 2553-2562, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32097558

ABSTRACT

Gold-silica (Au-SiO2) nanohybrids are of great technological importance, and it is crucial to develop facile synthetic protocols to prepare Au-SiO2 nanohybrids with novel structures. Here we report the bioinspired synthesis of pomegranate-like SiO2@Au nanoparticles (P-SiO2@Au NPs) via one-step aqueous synthesis from chloroauric acid and tetraethyl orthosilicate mediated by a basic amino acid, arginine. Effects of chloroauric acid, tetraethyl orthosilicate, and arginine on the morphology and optical property of the products are investigated in detail. The P-SiO2@Au NPs achieve tunable plasmon resonance depending on the amount of chloroauric acid, which affects the size and shape of the P-SiO2@Au NPs. Finite-difference time-domain simulations are performed, revealing that the plasmon peak red-shifts with increasing particle size. Arginine serves as the reducing and capping agents for Au as well as the catalyst for SiO2 formation and also promotes the combination of Au and SiO2. Formation process of the P-SiO2@Au NPs is clarified through time-course analysis. The P-SiO2@Au NPs show good sensitivity for both colloidal and paper-based surface-enhanced Raman scattering measurements. They achieve enhancement factors of 4.3 × 107-8.5 × 107 and a mass detection limit of ca. 1 ng using thiophenol as the model analyte.

7.
Nat Med ; 25(6): 968-976, 2019 06.
Article in English | MEDLINE | ID: mdl-31171880

ABSTRACT

In most cases of sporadic colorectal cancers, tumorigenesis is a multistep process, involving genomic alterations in parallel with morphologic changes. In addition, accumulating evidence suggests that the human gut microbiome is linked to the development of colorectal cancer. Here we performed fecal metagenomic and metabolomic studies on samples from a large cohort of 616 participants who underwent colonoscopy to assess taxonomic and functional characteristics of gut microbiota and metabolites. Microbiome and metabolome shifts were apparent in cases of multiple polypoid adenomas and intramucosal carcinomas, in addition to more advanced lesions. We found two distinct patterns of microbiome elevations. First, the relative abundance of Fusobacterium nucleatum spp. was significantly (P < 0.005) elevated continuously from intramucosal carcinoma to more advanced stages. Second, Atopobium parvulum and Actinomyces odontolyticus, which co-occurred in intramucosal carcinomas, were significantly (P < 0.005) increased only in multiple polypoid adenomas and/or intramucosal carcinomas. Metabolome analyses showed that branched-chain amino acids and phenylalanine were significantly (P < 0.005) increased in intramucosal carcinomas and bile acids, including deoxycholate, were significantly (P < 0.005) elevated in multiple polypoid adenomas and/or intramucosal carcinomas. We identified metagenomic and metabolomic markers to discriminate cases of intramucosal carcinoma from the healthy controls. Our large-cohort multi-omics data indicate that shifts in the microbiome and metabolome occur from the very early stages of the development of colorectal cancer, which is of possible etiological and diagnostic importance.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome , Adult , Aged , Case-Control Studies , Colorectal Neoplasms/genetics , Disease Progression , Female , Gastrointestinal Microbiome/genetics , Humans , Male , Metabolomics , Metagenomics , Middle Aged , Neoplasm Staging , Young Adult
8.
Part Fibre Toxicol ; 15(1): 41, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30352603

ABSTRACT

BACKGROUND: In order to examine whether myeloperoxidase (MPO) can be a useful marker for evaluating the pulmonary toxicity of nanomaterials, we analyzed MPO protein in bronchoalveolar lavage fluid (BALF) samples obtained from previous examinations of a rat model. In those examinations we performed intratracheal instillation exposures (dose: 0.2-1.0 mg) and inhalation exposures (exposure concentration: 0.32-10.4 mg/m3) using 9 and 4 nanomaterials with different toxicities, respectively. Based on those previous studies, we set Nickel oxide nanoparticles (NiO), cerium dioxide nanoparticles (CeO2), multi wall carbon nanotubes with short or long length (MWCNT (S) and MWCNT (L)), and single wall carbon nanotube (SWCNT) as chemicals with high toxicity; and titanium dioxide nanoparticles (TiO2 (P90) and TiO2 (Rutile)), zinc oxide nanoparticles (ZnO), and toner with external additives including nanoparticles as chemicals with low toxicity. We measured the concentration of MPO in BALF samples from rats from 3 days to 6 months following a single intratracheal instillation, and from 3 days to 3 months after the end of inhalation exposure. RESULTS: Intratracheal instillation of high toxicity NiO, CeO2, MWCNT (S), MWCNT (L), and SWCNT persistently increased the concentration of MPO, and inhalation of NiO and CeO2 increased the MPO in BALF. By contrast, intratracheal instillation of low toxicity TiO2 (P90), TiO2 (Rutile), ZnO, and toner increased the concentration of MPO in BALF only transiently, and inhalation of TiO2 (Rutile) and ZnO induced almost no increase of the MPO. The concentration of MPO correlated with the number of total cells and neutrophils, the concentration of chemokines for neutrophils (cytokine-induced neutrophil chemoattractant (CINC)-1 and heme oxygenase (HO)-1), and the activity of released lactate dehydrogenase (LDH) in BALF. The results from the receiver operating characteristics (ROC) for the toxicity of chemicals by the concentration of MPO proteins in the intratracheal instillation and inhalation exposures showed that the largest areas under the curves (AUC) s in both examinations occurred at 1 month after exposure. CONCLUSION: These data suggest that MPO can be a useful biomarker for the ranking of the pulmonary toxicity of nanomaterials, especially at 1 month after exposure, in both intratracheal instillation and inhalation exposure.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Nanoparticles/toxicity , Peroxidase/analysis , Animals , Biomarkers/analysis , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Chemokines/analysis , Lung/enzymology , Lung/pathology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Male , Nanoparticles/chemistry , Neutrophils/drug effects , Neutrophils/immunology , Rats, Inbred F344
9.
Int J Mol Sci ; 18(12)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29257061

ABSTRACT

The hazards of various types of nanoparticles with high functionality have not been fully assessed. We investigated the usefulness of biopersistence as a hazard indicator of nanoparticles by performing inhalation and intratracheal instillation studies and comparing the biopersistence of two nanoparticles with different toxicities: NiO and TiO2 nanoparticles with high and low toxicity among nanoparticles, respectively. In the 4-week inhalation studies, the average exposure concentrations were 0.32 and 1.65 mg/m³ for NiO, and 0.50 and 1.84 mg/m³ for TiO2. In the instillation studies, 0.2 and 1.0 mg of NiO nanoparticles and 0.2, 0.36, and 1.0 mg of TiO2 were dispersed in 0.4 mL water and instilled to rats. After the exposure, the lung burden in each of five rats was determined by Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) from 3 days to 3 months for inhalation studies and to 6 months for instillation studies. In both the inhalation and instillation studies, NiO nanoparticles persisted for longer in the lung compared with TiO2 nanoparticles, and the calculated biological half times (BHTs) of the NiO nanoparticles was longer than that of the TiO2 nanoparticles. Biopersistence also correlated with histopathological changes, inflammatory response, and other biomarkers in bronchoalveolar lavage fluid (BALF) after the exposure to nanoparticles. These results suggested that the biopersistence is a good indicator of the hazards of nanoparticles.


Subject(s)
Lung/drug effects , Metal Nanoparticles/adverse effects , Trachea/drug effects , Animals , Inhalation , Instillation, Drug , Male , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Nickel/chemistry , Rats , Rats, Inbred F344 , Titanium/chemistry
10.
Int J Mol Sci ; 17(8)2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27490535

ABSTRACT

We conducted inhalation and intratracheal instillation studies of zinc oxide (ZnO) nanoparticles in order to examine their pulmonary toxicity. F344 rats were received intratracheal instillation at 0.2 or 1 mg of ZnO nanoparticles with a primary diameter of 35 nm that were well-dispersed in distilled water. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed at three days, one week, one month, three months, and six months after the instillation. As the inhalation study, rats were exposed to a concentration of inhaled ZnO nanoparticles (2 and 10 mg/m³) for four weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were analyzed at three days, one month, and three months after the end of the exposure. In the intratracheal instillation study, both the 0.2 and the 1.0 mg ZnO groups had a transient increase in the total cell and neutrophil count in the BALF and in the expression of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in the BALF. In the inhalation study, transient increases in total cell and neutrophil count, CINC-1,-2 and HO-1 in the BALF were observed in the high concentration groups. Neither of the studies of ZnO nanoparticles showed persistent inflammation in the rat lung, suggesting that well-dispersed ZnO nanoparticles have low toxicity.


Subject(s)
Lung/drug effects , Metal Nanoparticles/toxicity , Neutrophils/drug effects , Zinc Oxide/toxicity , Animals , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Instillation, Drug , Intubation, Intratracheal , Male , Metal Nanoparticles/administration & dosage , Rats , Rats, Inbred F344 , Zinc Oxide/administration & dosage
11.
Antioxidants (Basel) ; 5(1)2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26797643

ABSTRACT

NiO nanoparticles were administered to rat lungs via intratracheal instillation or inhalation. During pulmonary toxicity caused by NiO nanoparticles, the induction of oxidative stress is a major factor. Both intratracheal instillation and inhalation of NiO nanoparticles induced pulmonary oxidative stress. The oxidative stress response protein, heme oxygenase-1 (HO-1), was induced by the administration of NiO nanoparticles at both the protein and gene expression level. Additionally, certain oxidative-stress markers in the lung, such as 8-iso-prostaglandin F2α, thioredoxin, and inducible nitric oxide synthase were increased. Furthermore, the concentration of myeloperoxidase (MPO) in the lung was also increased by the administration of NiO nanoparticles. When the amount of NiO in the lung is similar, the responses against pulmonary oxidative stress of intratracheal instillation and inhalation are also similar. However, the state of pulmonary oxidative stress in the early phase was different between intratracheal instillation and inhalation, even if the amount of NiO in the lung was similar. Inhalation causes milder oxidative stress than that caused by intratracheal instillation. On evaluation of the nanoparticle-induced pulmonary oxidative stress in the early phase, we should understand the different states of oxidative stress induced by intratracheal instillation and inhalation.

12.
Nanotoxicology ; 10(5): 607-18, 2016.
Article in English | MEDLINE | ID: mdl-26558952

ABSTRACT

In order to examine whether intratracheal instillation studies can be useful for determining the harmful effect of nanoparticles, we performed inhalation and intratracheal instillation studies using samples of the same nanoparticles. Nickel oxide nanoparticles (NiO) and titanium dioxide nanoparticles (TiO2) were used as chemicals with high and low toxicities, respectively. In the intratracheal instillation study, rats were exposed to 0.2 or 1 mg of NiO or TiO2. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the single intratracheal instillation. In the inhalation study, rats were exposed to inhaled NiO or TiO2 (1.65, 1.84 mg/m(3), respectively) for 4 weeks. The same endpoints were examined from 3 days to 3 months after the end of exposure. Inhalation of NiO induced an increase in the number of neutrophils in BALF and concentrations of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2 and heme oxygenase (HO)-1. Intratracheal instillation of NiO induced persistent inflammation and upregulation of these cytokines was observed in the rats. However, inhalation of TiO2 did not induce pulmonary inflammation, and intratracheal instillation of TiO2 transiently induced an increase in the number of neutrophils in BALF and the concentrations of CINC-1, CINC-2 and HO-1. Taken together, a difference in pulmonary inflammation was observed between the high and low toxicity nanomaterials in the intratracheal instillation studies, as in the inhalation studies, suggesting that intratracheal instillation studies may be useful for ranking the harmful effects of nanoparticles.


Subject(s)
Lung/drug effects , Nanoparticles , Nickel , Pneumonia/chemically induced , Titanium , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid/cytology , Cytokines/immunology , Instillation, Drug , Lung/immunology , Male , Nanoparticles/administration & dosage , Nanoparticles/toxicity , Neutrophils/drug effects , Nickel/administration & dosage , Nickel/toxicity , Rats , Rats, Wistar , Titanium/administration & dosage , Titanium/toxicity
13.
Environ Health Prev Med ; 21(1): 42-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26438563

ABSTRACT

OBJECTIVES: We performed the two inhalation exposures, whole-body inhalation and nose-only inhalation, to investigate the pulmonary deposition and health effects of the two inhalation methods. METHODS: In both methods, we exposed rats to the same TiO2 nanoparticles at almost the same exposure concentration for 6 h and compared the deposited amounts of nanoparticles and histopathological changes in the lungs. Rats were exposed to rutile-type TiO2 nanoparticles generated by the spray-dry method for 6 h. The exposure concentration in the whole-body chamber was 4.10 ± 1.07 mg/m(3), and that in nose-only chamber was 4.01 ± 1.11 mg/m(3). The particle sizes were 230 and 180 nm, respectively. A control group was exposed to fresh air. RESULTS: The amounts of TiO2 deposited in the lungs as measured by ICP-AES after acid digestion just after the exposure were: 42.6 ± 3.5 µg in the whole-body exposure and 46.0 ± 7.7 µg in the nose-only exposure groups. The histopathological evaluation was the same in both exposure groups: no infiltration of inflammatory cells in the alveolar space and interstitium, and no fibrosis. CONCLUSION: The two inhalation methods using the same material under the same exposure conditions resulted in the same particle deposition and histopathology in the lung.


Subject(s)
Air Pollutants/toxicity , Inhalation Exposure/adverse effects , Lung/drug effects , Metal Nanoparticles , Titanium/toxicity , Toxicity Tests/methods , Animals , Lung/pathology , Male , Particle Size , Rats , Rats, Inbred F344 , Spectrophotometry, Atomic
14.
J Nanopart Res ; 17(11): 442, 2015.
Article in English | MEDLINE | ID: mdl-26594128

ABSTRACT

We performed inhalation and intratracheal instillation studies of cerium dioxide (CeO2) nanoparticles in order to investigate their pulmonary toxicity, and observed pulmonary inflammation not only in the acute and but also in the chronic phases. In the intratracheal instillation study, F344 rats were exposed to 0.2 mg or 1 mg of CeO2 nanoparticles. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the instillation. In the inhalation study, rats were exposed to the maximum concentration of inhaled CeO2 nanoparticles (2, 10 mg/m3, respectively) for 4 weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were examined from 3 days to 3 months after the end of the exposure. The intratracheal instillation of CeO2 nanoparticles caused a persistent increase in the total and neutrophil number in BALF and in the concentration of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in BALF during the observation time. The inhalation of CeO2 nanoparticles also induced a persistent influx of neutrophils and expression of CINC-1, CINC-2, and HO-1 in BALF. Pathological features revealed that inflammatory cells, including macrophages and neutrophils, invaded the alveolar space in both studies. Taken together, the CeO2 nanoparticles induced not only acute but also chronic inflammation in the lung, suggesting that CeO2 nanoparticles have a pulmonary toxicity that can lead to irreversible lesions.

15.
Chem Asian J ; 8(11): 2801-6, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23881726

ABSTRACT

A facile synthesis of partially hydroxy-modified MOF-5 and its improved H2-adsorption capacity by lithium doping are reported. The reaction of Zn(NO3)2·6H2O with a mixture of terephthalic acid (H2BDC) and 2-hydroxyterephthalic acid (H2BDC-OH) in DMF gave hydroxy-modified MOF-5 (MOF-5-OH-x), in which the molar fraction (x) of BDC-OH(2-) was up to 0.54 of the whole ligand. The MOF-5-OH-x frameworks had high BET surface areas (about 3300 m(2) g(-1)), which were comparable to that of MOF-5. We suggest that the MOF-5-OH-x frameworks are formed by the secondary growth of BDC(2-)-rich MOF-5 seed crystals, which are nucleated during the early stage of the reaction. Subsequent Li doping into MOF-5-OH-x results in increased H2 uptake at 77 K and 0.1 MPa from 1.23 to 1.39 wt.% and an increased isosteric heat of H2 adsorption from 5.1-4.2 kJ mol(-1) to 5.5-4.4 kJ mol(-1).

16.
J Am Chem Soc ; 133(35): 13832-5, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21819064

ABSTRACT

A novel hierarchically porous, hyper-cross-linked siloxane-organic hybrid (PSN-5) has been synthesized by Friedel-Crafts self-condensation of benzyl chloride-terminated double-four-ring cubic siloxane cages as a singular molecular precursor. Simultaneous polymerization of the organic functional groups and destruction of the siloxane cages during synthesis yielded PSN-5, which has an ultrahigh BET surface area (∼2500 m(2) g(-1)) and large pore volume (∼3.3 cm(3) g(-1)) that to our knowledge are the highest values reported for siloxane-based materials. PSN-5 also shows a high H(2) uptake of 1.25 wt % at 77 K and 760 Torr.

SELECTION OF CITATIONS
SEARCH DETAIL
...