Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Expert Rev Vaccines ; 23(1): 213-225, 2024.
Article in English | MEDLINE | ID: mdl-38288980

ABSTRACT

BACKGROUND: This study aimed to evaluate VE of primary, first, and second booster ancestral-strain monovalent mRNA COVID-19 vaccination against symptomatic infections and severe diseases in Japan. METHODS: We conducted a test-negative case-control study. We included medically attended episodes and hospitalizations involving individuals aged ≥16 with signs and symptoms from July to November 2022, when Omicron BA.5 was dominant nationwide. To evaluate VE, we calculated adjusted ORs of vaccination among test-positive versus test-negative individuals using a mixed-effects logistic regression. RESULTS: For VE against symptomatic infections among individuals aged 16 to 59, VE of primary vaccination at > 180 days was 26.1% (95% CI: 10.6-38.8%); VE of the first booster was 58.5% (48.4-66.7%) at ≤90 days, decreasing to 41.1% (29.5-50.8%) at 91 to 180 days. For individuals aged ≥60, VE of the first booster was 42.8% (1.7-66.7%) at ≤90 days, dropping to 15.4% (-25.9-43.2%) at 91 to 180 days, and then increasing to 44.0% (16.4-62.5%) after the second booster. For VE against severe diseases, VE of the first and second booster was 77.3% (61.2-86.7%) at ≤90 days and 55.9% (23.4-74.6%) afterward. CONCLUSION: mRNA booster vaccination provided moderate protection against symptomatic infections and high-level protection against severe diseases during the BA.5 epidemic in Japan.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Japan/epidemiology , Case-Control Studies , Vaccine Efficacy , RNA, Messenger , Vaccination
2.
Cells ; 11(14)2022 07 19.
Article in English | MEDLINE | ID: mdl-35883685

ABSTRACT

Gamma-interferon (γ-IFN) significantly inhibits infection by replication-defective viral vectors derived from the human immunodeficiency virus type 1 (HIV-1) or murine leukemia virus (MLV) but the underlying mechanism remains unclear. Previously we reported that knockdown of γ-IFN-inducible lysosomal thiolreductase (GILT) abrogates the antiviral activity of γ-IFN in TE671 cells but not in HeLa cells, suggesting that other γ-IFN-inducible host factors are involved in its antiviral activity in HeLa cells. We identified cellular factors, the expression of which are induced by γ-IFN in HeLa cells, using a microarray, and analyzed the effects of 11 γ-IFN-induced factors on retroviral vector infection. Our results showed that the exogenous expression of FAT10, IFI6, or IDO1 significantly inhibits both HIV-1- and MLV-based vector infections. The antiviral activity of γ-IFN was decreased in HeLa cells, in which the function of IDO1, IFI6, FAT10, and GILT were simultaneously inhibited. IDO1 is an enzyme that metabolizes an essential amino acid, tryptophan. However, IDO1 did not restrict retroviral vector infection in Atg3-silencing HeLa cells, in which autophagy did not occur. This study found that IDO1, IFI6, FAT10, and GILT are involved in the antiviral activity of γ-IFN, and IDO1 inhibits retroviral infection by inducing autophagy.


Subject(s)
HIV Infections , HIV-1 , Retroviridae Infections , Anti-Retroviral Agents/pharmacology , Antiviral Agents/pharmacology , Autophagy , HIV Infections/drug therapy , HIV-1/metabolism , HeLa Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Leukemia Virus, Murine , Mitochondrial Proteins , Oxidoreductases Acting on Sulfur Group Donors , Ubiquitins/pharmacology
3.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35458549

ABSTRACT

Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Ebolavirus , Hemorrhagic Fever, Ebola , Alkaloids/pharmacology , Antiviral Agents/chemistry , Dextran Sulfate , Ebolavirus/metabolism , Glycoproteins , Hemorrhagic Fever, Ebola/drug therapy , Heparin/pharmacology , Humans , SARS-CoV-2 , Virus Internalization
4.
Small GTPases ; 13(1): 162-182, 2022 01.
Article in English | MEDLINE | ID: mdl-34180342

ABSTRACT

We recently identified a CD63-interacting protein to understand the role of CD63 in virion production of the human immunodeficiency virus type 1, and we have found that Rab3a forms a complex with CD63. In this study, we analysed the effect of Rab3a on virion production of the murine leukaemia virus (MLV), which is another member of the retrovirus family. We found that Rab3a silencing induced lysosomal degradation of the MLV Gag protein, and recovery of the Rab3a expression restored the level of the Gag protein through a complex formation of MLV Gag and Rab3a, indicating that Rab3a is required for MLV Gag protein expression. In contrast, CD63 silencing decreased the infectivity of released virions but had no effect on virion production, indicating that CD63 facilitates the infectivity of released MLV particles. Although Rab3a induced CD63 degradation in uninfected cells, the complex of MLV Gag and Rab3a suppressed the Rab3a-mediated CD63 degradation in MLV-infected cells. Finally, we found that the MLV Gag protein interacts with Rab3a to stabilize its own protein and CD63 that facilitates the infectivity of released MLV particles. Considering the involvement of Rab3a in lysosome trafficking to the plasma membrane, it may also induce cell surface transport of the MLV Gag protein.


Subject(s)
Gene Products, gag , Leukemia Virus, Murine , Mice , Animals , Humans , Gene Products, gag/metabolism , Leukemia Virus, Murine/metabolism , Virion/metabolism , Cell Membrane/metabolism , GTP-Binding Proteins/metabolism
5.
Mol Immunol ; 140: 240-249, 2021 12.
Article in English | MEDLINE | ID: mdl-34773863

ABSTRACT

We have previously reported that gamma-interferon inducible lysosomal thiolreductase (GILT) functions as a host defense factor against retroviruses by digesting disulfide bonds on viral envelope proteins. GILT is widely conserved even in plants and fungi as well as animals. The thiolreductase active site of mammalian GILT is composed of a CXXC amino acid motif, whereas the C-terminal cysteine residue is changed to serine in arthropods including shrimps, crabs, and flies. GILT from Penaeus monodon (PmGILT) also has the CXXS motif instead of the CXXC active site. We demonstrate here that a human GILT mutant (GILT C75S) with the CXXS motif and PmGILT significantly inhibit amphotropic murine leukemia virus vector infection in human cells without alterning its expression level and lysosomal localization, showing that the C-terminal cysteine residue of the active site is not required for the antiviral activity. We have reported that human GILT suppresses HIV-1 particle production by digestion of disulfide bonds on CD63. However, GILT C75S mutant and PmGILT did not digest CD63 disulfide bonds, and had no effect on HIV-1 virion production, suggesting that they do not have thiolreductase activity. Taken together, this study found that antiviral activity, but not thiolreductase activity, is conserved in arthropod GILT proteins. This finding provides a new insight that the common function of GILT is antiviral activity in many animals.


Subject(s)
Antiviral Agents/metabolism , Arthropods/enzymology , Arthropods/virology , Interferon-gamma/pharmacology , Oxidoreductases/metabolism , Amino Acid Motifs , Animals , Baculoviridae/physiology , COS Cells , Chlorocebus aethiops , Conserved Sequence , Endosomes/metabolism , HIV-1/physiology , HeLa Cells , Humans , Interferon-gamma/metabolism , Leukemia Virus, Murine/physiology , Lysosomes/metabolism , Oxidoreductases/chemistry , Penaeidae/virology , Substrate Specificity , Virion/physiology
6.
PLoS Negl Trop Dis ; 15(8): e0009670, 2021 08.
Article in English | MEDLINE | ID: mdl-34403427

ABSTRACT

BACKGROUND: Fever with jaundice is a common symptom of some infectious diseases. In public health surveillance within the Democratic Republic of the Congo (DRC), yellow fever is the only recognized cause of fever with jaundice. However, only 5% of the surveillance cases are positive for yellow fever and thus indicate the involvement of other pathogens. Leptospira spp. are the causative agents of leptospirosis, a widespread bacterial zoonosis, a known cause of fever with jaundice. This study aimed to determine the seropositivity of anti-Leptospira antibodies among suspected yellow fever cases and map the geographical distribution of possible leptospirosis in the DRC. METHODS: We conducted a retrospective study using 1,300 samples from yellow fever surveillance in the DRC from January 2017 to December 2018. Serum samples were screened for the presence of IgM against Leptospira spp. by a whole cell-based IgM ELISA (Patoc-IgM ELISA) at the Institut National de Recherche Biomedicale in Kinshasa (INRB) according to World Health Organization (WHO) guidance. Exploratory univariable and multivariable logistic regression analyses were undertaken to assess associations between socio-demographic factors and the presence of Leptospira IgM. RESULTS: Of the 1,300 serum samples screened, 88 (7%) showed evidence of IgM against Leptospira spp. Most positive cases (34%) were young adult males in the 20-29-year group. There were statistically significant associations between having Leptospira IgM antibodies, age, sex, and living area. Observed positive cases were mostly located in urban settings, and the majority lived in the province of Kinshasa. There was a statistically significant association between seasonality and IgM Leptospira spp. positivity amongst those living in Kinshasa, where most of the positive cases occurred during the rainy season. CONCLUSIONS: This study showed that leptospirosis is likely an overlooked cause of unexplained cases of fever with jaundice in the DRC and highlights the need to consider leptospirosis in the differential diagnosis of fever with jaundice, particularly in young adult males. Further studies are needed to identify animal reservoirs, associated risk factors, and the burden of human leptospirosis in the DRC.


Subject(s)
Fever/diagnosis , Fever/epidemiology , Fever/microbiology , Leptospirosis/diagnosis , Leptospirosis/epidemiology , Adolescent , Adult , Animals , Antibodies, Bacterial/blood , Child , Child, Preschool , Democratic Republic of the Congo/epidemiology , Humans , Immunoglobulin M/blood , Infant , Infant, Newborn , Jaundice/diagnosis , Jaundice/epidemiology , Jaundice/microbiology , Leptospira/immunology , Logistic Models , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Yellow Fever/diagnosis , Yellow Fever/epidemiology , Yellow Fever/microbiology , Young Adult
7.
Sci Rep ; 10(1): 21474, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293588

ABSTRACT

Gene editing using CRISPR/Cas9 is a promising method to cure many human genetic diseases. We have developed an efficient system to deliver Cas9 into the adeno-associated virus integration site 1 (AAVS1) locus, known as a safe harbor, using lentivirus and AAV viral vectors, as a step toward future in vivo transduction. First, we introduced Cas9v1 (derived from Streptococcus pyogenes) at random into the genome using a lentiviral vector. Cas9v1 activity was used when the N-terminal 1.9 kb, and C-terminal 2.3 kb fragments of another Cas9v2 (human codon-optimized) were employed sequentially with specific single-guide RNAs (sgRNAs) and homology donors carried by AAV vectors into the AAVS1 locus. Then, Cas9v1 was removed from the genome by another AAV vector containing sgRNA targeting the long terminal repeat of the lentivirus vector. The reconstituted Cas9v2 in the AAVS1 locus was functional and gene editing was efficient.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Dependovirus/genetics , Lentivirus/genetics , Streptococcus pyogenes/genetics , Transduction, Genetic , Gene Editing , Gene Transfer Techniques , Genetic Loci , Genetic Vectors/genetics , HEK293 Cells , Humans , RNA, Guide, Kinetoplastida/genetics , Transduction, Genetic/methods
8.
Viruses ; 12(7)2020 07 03.
Article in English | MEDLINE | ID: mdl-32635194

ABSTRACT

Chikungunya virus (CHIKV) is an enveloped virus that enters host cells and transits within the endosomes before starting its replication cycle, the precise mechanism of which is yet to be elucidated. Endocytosis and endosome acidification inhibitors inhibit infection by CHIKV, murine leukemia virus (MLV), or SARS-coronavirus, indicating that these viral entries into host cells occur through endosomes and require endosome acidification. Although endosomal cathepsin B protease is necessary for MLV, Ebola virus, and SARS-CoV infections, its role in CHIKV infection is unknown. Our results revealed that endocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in 293T cells but not in TE671 cells. In contrast, macropinocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in TE671 cells but not in 293T cells, suggesting that CHIKV host cell entry occurs via endocytosis or macropinocytosis, depending on the cell lines used. Cathepsin B inhibitor and knockdown by an shRNA suppressed CHIKV-pseudotyped MLV vector infection both in 293T and TE671 cells. These results show that cathepsin B facilitates CHIKV infection regardless of the entry pathway.


Subject(s)
Cathepsin B/metabolism , Chikungunya Fever/pathology , Chikungunya virus/physiology , Viral Envelope Proteins/metabolism , Virus Internalization , Cathepsin B/antagonists & inhibitors , Cell Line, Tumor , Endocytosis/physiology , Endosomes/virology , HEK293 Cells , HeLa Cells , Humans , Leukemia Virus, Murine/physiology , Pinocytosis/physiology , RNA Interference , RNA, Small Interfering/genetics
9.
Aging (Albany NY) ; 12(15): 15504-15513, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32706758

ABSTRACT

Sarcopenia is characterized by a progressive skeletal muscle disorder that involves the loss of muscle mass and low muscle strength, which contributes to increased adverse outcomes. Few studies have investigated the association between chronic infection and sarcopenia. This study aimed to examine the association between human T-cell lymphotropic virus type-1 (HTLV-1) and sarcopenia. We conducted a cross-sectional study and enrolled 2,811 participants aged ≥ 40 years from a prospective cohort study in Japanese community dwellers during 2017-2019. Sarcopenia was defined as low appendicular skeletal muscle mass and low handgrip strength. The association between HTLV-1 seropositivity and sarcopenia was assessed using multivariable logistic regression. Odds ratio (OR) and 95% confidence interval (CI) of sarcopenia were analysed using HTLV-1 seropositivity. We adjusted for age, sex, body mass index, physical activity, systolic blood pressure, glycated haemoglobin, low-density lipoprotein cholesterol, and smoking and drinking status. Of 2,811 participants, 484 (17.2%) HTLV-1 infected participants were detected. HTLV-1 infection was significantly associated with sarcopenia (adjusted OR 1.46, 95% CI 1.03-2.07, P = 0.034). HTLV-1 was associated with sarcopenia among community-dwelling adults. Active surveillance and early detection of asymptomatic HTLV-1 infection might be beneficial to reinforce countermeasures to inhibit the progress of HTLV infection-associated sarcopenia.


Subject(s)
HTLV-I Infections/complications , Sarcopenia/virology , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Japan , Male , Middle Aged
10.
Article in English | MEDLINE | ID: mdl-32411688

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1)-based viral vector is widely used as a biomaterial to transfer a gene of interest into target cells in many biological study fields including gene therapy. Vesicular stomatitis virus glycoprotein (VSV-G)-containing HIV-1 vector much more efficiently transduces various mammalian cells than other viral envelope proteins-containing vectors. Understanding the mechanism would contribute to development of a novel method of efficient HIV-1 vector production. HIV-1 vector is generally constructed by transient transfection of human 293T or African green monkey COS7 cells. It was found in this study that HIV-1 Gag protein is constitutively digested in lysosomes of African green monkey cells. Surprisingly, VSV-G elevated HIV-1 Gag protein levels, suggesting that VSV-G protects Gag protein from the lysosomal degradation. Unphosphorylated ezrin, but not phosphorylated ezrin, was detected in COS7 cells, and ezrin silencing elevated Gag protein levels in the presence of VSV-G. Expression of unphosphorylated ezrin reduced Gag protein amounts. These results indicate that unphosphorylated ezrin proteins inhibit the VSV-G-mediated stabilization of HIV-1 Gag protein. Trafficking of HIV-1 Gag-associated intracellular vesicles may be controlled by ezrin. Finally, this study found that ezrin silencing yields higher amount of VSV-G-pseudotyped HIV-1 vector.

11.
FASEB J ; 33(12): 14516-14527, 2019 12.
Article in English | MEDLINE | ID: mdl-31648581

ABSTRACT

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle, which is closely related to human T-cell leukemia viruses. BLV has spread worldwide and causes a serious problem for the cattle industry. The cellular receptor specifically binds with viral envelope glycoprotein (Env), and this attachment mediates cell fusion to lead virus entry. BLV Env reportedly binds to cationic amino acid transporter 1 (CAT1)/solute carrier family 7 member 1 (SLC7A1), but whether the CAT1/SLC7A1 is an actual receptor for BLV remains unknown. Here, we showed that CAT1 functioned as an infection receptor, interacting with BLV particles. Cells expressing undetectable CAT1 levels were resistant to BLV infection but became highly susceptible upon CAT1 overexpression. CAT1 exhibited specific binding to BLV particles on the cell surface and colocalized with the Env in endomembrane compartments and membrane. Knockdown of CAT1 in permissive cells significantly reduced binding to BLV particles and BLV infection. Expression of CAT1 from various species demonstrated no species specificity for BLV infection, implicating CAT1 as a functional BLV receptor responsible for its broad host range. These findings provide insights for BLV infection and for developing new strategies for treating BLV and preventing its spread.-Bai, L., Sato, H., Kubo, Y., Wada, S., Aida, Y. CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection.


Subject(s)
Cationic Amino Acid Transporter 1/metabolism , Enzootic Bovine Leukosis/metabolism , Leukemia Virus, Bovine/metabolism , Animals , CHO Cells , COS Cells , Cationic Amino Acid Transporter 1/genetics , Cats , Cattle , Chlorocebus aethiops , Cricetinae , Cricetulus , Enzootic Bovine Leukosis/virology , HEK293 Cells , HeLa Cells , Humans , Leukemia Virus, Bovine/pathogenicity , Protein Binding , Sheep , Swine , Viral Envelope Proteins/metabolism
12.
Mar Drugs ; 17(9)2019 Aug 24.
Article in English | MEDLINE | ID: mdl-31450557

ABSTRACT

In this study, we aimed to find chemicals from lower sea animals with defensive effects against human immunodeficiency virus type 1 (HIV-1). A library of marine natural products consisting of 80 compounds was screened for activity against HIV-1 infection using a luciferase-encoding HIV-1 vector. We identified five compounds that decreased luciferase activity in the vector-inoculated cells. In particular, portimine, isolated from the benthic dinoflagellate Vulcanodinium rugosum, exhibited significant anti-HIV-1 activity. Portimine inhibited viral infection with an 50% inhibitory concentration (IC50) value of 4.1 nM and had no cytotoxic effect on the host cells at concentrations less than 200 nM. Portimine also inhibited vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1 vector infection. This result suggested that portimine mainly targeted HIV-1 Gag or Pol protein. To analyse which replication steps portimine affects, luciferase sequences were amplified by semi-quantitative PCR in total DNA. This analysis revealed that portimine inhibits HIV-1 vector infection before or at the reverse transcription step. Portimine has also been shown to have a direct effect on reverse transcriptase using an in vitro reverse transcriptase assay. Portimine efficiently inhibited HIV-1 replication and is a potent lead compound for developing novel therapeutic drugs against HIV-1-induced diseases.


Subject(s)
Anti-HIV Agents/pharmacology , Aquatic Organisms/chemistry , Dinoflagellida/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , Imines/pharmacology , Spiro Compounds/pharmacology , Anti-HIV Agents/isolation & purification , Anti-HIV Agents/therapeutic use , Drug Evaluation, Preclinical , HEK293 Cells , HIV-1/physiology , HeLa Cells , Humans , Imines/isolation & purification , Imines/therapeutic use , Inhibitory Concentration 50 , Spiro Compounds/isolation & purification , Spiro Compounds/therapeutic use , Virus Replication/drug effects
13.
Virology ; 532: 82-87, 2019 06.
Article in English | MEDLINE | ID: mdl-31035110

ABSTRACT

Cytoplasmic tails of envelope (Env) glycoproteins of many retroviruses inhibit their membrane fusion activity. The cytoplasmic 16-amino acid peptide of ecotropic murine leukemia virus (E-MLV) Env protein, called the R-peptide, also inhibits the membrane fusion activity of the Env protein. However, the molecular mechanism of the inhibition has not been elucidated yet. In this study, we found that R-peptide-containing Env protein of E-MLV binds to the cell surface receptor cationic amino acid transporter-1 (CAT-1) with weaker affinity than R-peptide-truncated Env protein. Consistent with this result, R-peptide-containing Env protein had less efficient inhibition of E-MLV vector infection than R-peptide-truncated Env protein. R-peptide truncation has been reported to induce conformational change in the surface subunit of E-MLV Env protein that interacts with the receptor. Taken together, our findings indicate that R-peptide truncation induces conformational change in the receptor-binding domain of the E-MLV Env protein and facilitates the Env-receptor interaction.


Subject(s)
Cationic Amino Acid Transporter 1/metabolism , Host-Pathogen Interactions/genetics , Leukemia Virus, Murine/metabolism , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism , Viral Envelope Proteins/metabolism , Animals , Binding Sites , Cationic Amino Acid Transporter 1/chemistry , Cationic Amino Acid Transporter 1/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Leukemia Virus, Murine/genetics , Membrane Fusion , Mice , NIH 3T3 Cells , Protein Binding , Protein Interaction Domains and Motifs , Proteolysis , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Virus/chemistry , Receptors, Virus/genetics , Signal Transduction , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
14.
Front Microbiol ; 9: 1912, 2018.
Article in English | MEDLINE | ID: mdl-30210460

ABSTRACT

Host-cell expression of the ezrin protein is required for CXCR4 (X4)-tropic HIV-1 infection. Ezrin function is regulated by phosphorylation at threonine-567. This study investigates the role of ezrin phosphorylation in HIV-1 infection and virion release. We analyzed the effects of ezrin mutations involving substitution of threonine-567 by alanine (EZ-TA), a constitutively inactive mutant, or by aspartic acid (EZ-TD), which mimics phosphorylated threonine. We also investigated the effects of ezrin silencing on HIV-1 virion release using a specific siRNA. We observed that X4-tropic HIV-1 vector infection was inhibited by expression of the EZ-TA mutant but increased by expression of the EZ-TD mutant, suggesting that ezrin phosphorylation in target cells is required for efficient HIV-1 entry. Expression of a dominant-negative mutant of ezrin (EZ-N) and ezrin silencing in HIV-1 vector-producing cells significantly reduced the infectivity of released virions without affecting virion production. This result indicates that endogenous ezrin expression is required for virion infectivity. The EZ-TD but not the EZ-TA inhibited virion release from HIV-1 vector-producing cells. Taken together, these findings suggest that ezrin phosphorylation in target cells is required for efficient HIV-1 entry but inhibits virion release from HIV-1 vector-producing cells.

15.
Article in English | MEDLINE | ID: mdl-29629340

ABSTRACT

Cleavage and activation of hemagglutinin (HA) by trypsin-like proteases in influenza A virus (IAV) are essential prerequisites for its successful infection and spread. In host cells, some transmembrane serine proteases such as TMPRSS2, TMPRSS4 and HAT, along with plasmin in the bloodstream, have been reported to cleave the HA precursor (HA0) molecule into its active forms, HA1 and HA2. Some trypsinogens can also enhance IAV proliferation in some cell types (e.g., rat cardiomyoblasts). However, the precise activation mechanism for this process is unclear, because the expression level of the physiological activator of the trypsinogens, the TMPRSS15 enterokinase, is expected to be very low in such cells, with the exception of duodenal cells. Here, we show that at least two variant enterokinases are expressed in various human cell lines, including A549 lung-derived cells. The exogenous expression of these enterokinases was able to enhance the proliferation of IAV in 293T human kidney cells, but the proliferation was reduced by knocking down the endogenous enterokinase in A549 cells. The enterokinase was able to enhance HA processing in the cells, which activated trypsinogen in vitro and in the IAV-infected cells also. Therefore, we conclude that enterokinase plays a role in IAV infection and proliferation by activating trypsinogen to process viral HA in human cell lines.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/enzymology , Trypsin/metabolism , Cell Line , Enzyme Activation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host-Pathogen Interactions , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/virology , Protein Processing, Post-Translational , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Trypsin/genetics
16.
Biochem Biophys Res Commun ; 501(4): 833-837, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29684346

ABSTRACT

Interferon regulatory factor (IRF) 4 and the proto-oncogene c-Rel cooperate in growth and antiviral drug resistance of adult T-cell leukemia/lymphoma (ATLL). To elucidate the target of IRF4 and c-Rel in ATLL, we determined the simultaneous binding sites of IRF4 and c-Rel using ChIP-seq technology. Nine genes were identified within 2 kb of binding sites, including MIR3662. Expression of miR-3662 was regulated by IRF4, and to a lesser extent by c-Rel. Cell proliferation was inhibited by knockdown of miR-3662 and expression of miR-3662 was correlated with antiviral drug resistance in ATLL cell lines. Thus, miR-3662 represents a target for therapies against ATLL.


Subject(s)
Drug Resistance, Viral/genetics , Gene Expression Regulation, Leukemic , Leukemia-Lymphoma, Adult T-Cell/genetics , Leukemia-Lymphoma, Adult T-Cell/virology , MicroRNAs/genetics , Adult , Base Sequence , Binding Sites/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Interferon Regulatory Factors/metabolism , Leukemia-Lymphoma, Adult T-Cell/pathology , MicroRNAs/metabolism , Protein Binding/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins c-rel/metabolism
17.
Front Microbiol ; 8: 1653, 2017.
Article in English | MEDLINE | ID: mdl-28900422

ABSTRACT

CD63, a member of the tetraspanin family, is involved in virion production by human immunodeficiency virus type 1 (HIV-1), but its mechanism is unknown. In this study, we showed that a small GTP-binding protein, Rab3a, interacts with CD63. When Rab3a was exogenously expressed, the amounts of CD63 decreased in cells. The Rab3a-mediated reduction of CD63 was suppressed by lysosomal and proteasomal inhibitors. The amount of CD63 was increased by reducing the endogenous Rab3a level using a specific shRNA. These results indicate that Rab3a binds to CD63 to induce the degradation of CD63. Rab3a is thought to be involved in exocytosis, but we found that another function of Rab3a affects the fate of CD63 in lysosomes. CD63 interacted with Rab3a and was incorporated into HIV-1 particles. However, Rab3a was not detected in HIV-1 virions, thereby indicating that Rab3a-free CD63, but not Rab3a-bound CD63, is incorporated into HIV-1 particles. Overexpression or silencing of Rab3a moderately reduced HIV-1 virion formation. Overexpression of Rab3a decreased CD63 levels, but did not affect the incorporation of CD63 into HIV-1 particles. This study showed that Rab3a binds to CD63 to induce the degradation of CD63, and only Rab3a-free CD63 is incorporated into HIV-1 particles.

18.
Oncotarget ; 7(44): 71255-71273, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27655726

ABSTRACT

The mechanism by which type II interferon (IFN) inhibits virus replications remains to be identified. Murine leukemia virus (MLV) replication was significantly restricted by γ-IFN, but not human immunodeficiency virus type 1 (HIV-1) replication. Because MLV enters host cells via endosomes, we speculated that certain cellular factors among γ-IFN-induced, endosome-localized proteins inhibit MLV replication. We found that γ-IFN-inducible lysosomal thiolreductase (GILT) significantly restricts HIV-1 replication as well as MLV replication by its thiolreductase activity. GILT silencing enhanced replication-defective HIV-1 vector infection and virion production in γ-IFN-treated cells, although γ-IFN did not inhibit HIV-1 replication. This result showed that GILT is required for the anti-viral activity of γ-IFN. Interestingly, GILT protein level was increased by γ-IFN in uninfected cells and env-deleted HIV-1-infected cells, but not in full-length HIV-1-infected cells. γ-IFN-induced transcription from the γ-IFN-activation sequence was attenuated by the HIV-1 Env protein. These results suggested that the γ-IFN cannot restrict HIV-1 replication due to the inhibition of γ-IFN signaling by HIV-1 Env. Finally, we found that 4,4'-dithiodipyridine (4-PDS), which inhibits S-S bond formation at acidic pH, significantly suppresses HIV-1 vector infection and virion production, like GILT. In conclusion, this study showed that GILT functions as a host restriction factor against the retroviruses, and a GILT mimic, 4-PDS, is the leading compound for the development of novel concept of anti-viral agents.


Subject(s)
Anti-Retroviral Agents/pharmacology , HIV-1/physiology , Oxidoreductases Acting on Sulfur Group Donors/physiology , Animals , COS Cells , Chlorocebus aethiops , Dithionitrobenzoic Acid/pharmacology , Gene Products, env/physiology , HIV-1/drug effects , Humans , Interferon-gamma/pharmacology , Leukemia Virus, Murine/drug effects , Leukemia Virus, Murine/physiology , Mice , Tetraspanin 30/physiology , Virion/physiology , Virus Replication/drug effects
19.
Front Microbiol ; 6: 1552, 2015.
Article in English | MEDLINE | ID: mdl-26834711

ABSTRACT

Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within.

20.
Biochem Biophys Res Commun ; 447(1): 216-22, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24721431

ABSTRACT

Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.


Subject(s)
Androgens/pharmacology , Cell Proliferation/drug effects , Prostatic Neoplasms/virology , Xenotropic murine leukemia virus-related virus/physiology , Androgen Receptor Antagonists/pharmacology , Anilides/pharmacology , Animals , Cell Line, Tumor , Dihydrotestosterone/pharmacology , Humans , Male , Mice , Nitriles/pharmacology , Rats , Receptors, Androgen/biosynthesis , Receptors, Androgen/drug effects , Tosyl Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...