Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Angew Chem Int Ed Engl ; : e202414786, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39295286

ABSTRACT

The selenides of platinum-group metals (PGMs) are emerging as promising catalysts for diverse electrochemical reactions. To date, most studies have focused on single metal or bimetallic systems, whereas the preparation of a high-entropy (HE) selenide consisting of five or more PGM elements holds the promise to further enhance catalytic performance by introducing abundant active sites with various local coordination environments and electronic structures. Herein, we report for the first time the synthesis of PGM-based HE-Selenide (HE-Se) nanoparticles with a unique amorphous structure. The atomic metal-Se coordination and the presence of short-range order were thoroughly revealed. It is further shown that the amorphous HE-Se can be facilely transformed into a single-phase crystalline HE-Se with a cubic structure by thermal annealing. Catalytically, the amorphous HE-Se showed better acidic hydrogen evolution activity over monometallic PGM-based selenides and the crystalline counterpart, demonstrating the advantages of high-entropy configuration and amorphous structure. Our findings may pave the way toward the synthesis and property exploration of amorphous PGM-based selenides with tunable compositions.

2.
Chem Sci ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39263659

ABSTRACT

Dynamical fluctuations of the elastic strain in strongly correlated systems are known to affect the onset of metal-to-insulator or superconducting transitions. Here we report their effect on the properties of a family of bandwidth-controlled alkali-intercalated fullerene superconductors. We introduce elastic strain through static local structural disorder in a systematic and controllable way in the fcc-structured K x Cs3-x C60 (with potassium content, 0.22 ≤ x K ≤ 2) series of compositions by utilizing the difference in size between the K+ and Cs+ co-dopants. The occurrence of the crossover from the Mott-Jahn-Teller insulating (MJTI) state into the strongly correlated Jahn-Teller metal (JTM) on cooling is evidenced for the compositions with x K < 1.28 by both synchrotron X-ray powder diffraction (SXRPD) - anomalous reduction of the unit cell volume - and 133Cs NMR spectroscopy - sudden suppression in the 133Cs spin-lattice relaxation rates. The emerging superconducting state with a maximum critical temperature, T c = 30.9 K shows a characteristic dome-like dependence on the unit-cell volume or equivalently, on the ratio between the on-site Coulomb repulsion, U, and the bandwidth, W. However, compared to the parent Cs3C60 composition in which cation disorder effects are completely absent, the maximum T c is lower by ∼12%. The reduction in T c displays a linear dependence on the variance of the tetrahedral-site cation size, σ T 2, thus establishing a clear link between structural-disorder-induced attenuation of critical elastic strain fluctuations and the electronic ground state.

4.
Chem Sci ; 15(20): 7560-7567, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784732

ABSTRACT

Solid-solution alloys based on platinum group metals and p-block metals have attracted much attention due to their promising potential as materials with a continuously fine-tunable electronic structure. Here, we report on the first synthesis of novel solid-solution RuSn alloy nanoparticles (NPs) by electrochemical cyclic voltammetry sweeping of RuSn@SnOx NPs. High-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy maps confirmed the random and homogeneous distribution of Ru and Sn elements in the alloy NPs. Compared with monometallic Ru NPs, the RuSn alloy NPs showed improved hydrogen evolution reaction (HER) performance. The overpotentials of Ru0.94Sn0.06 NPs/C and Ru0.87Sn0.13 NPs/C to achieve a current density of 10 mA cm-2 were 43.41 and 33.19 mV, respectively, which are lower than those of monometallic Ru NPs/C (53.53 mV) and commercial Pt NPs/C (55.77 mV). The valence-band structures of the NPs investigated by hard X-ray photoelectron spectroscopy demonstrated that the d-band centre of RuSn NPs shifted downward compared with that of Ru NPs. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure analyses indicated that in the RuSn alloy NPs, charge transfer occurs from Sn to Ru, which was considered to result in a downward shift of the d-band centre in RuSn NPs and to regulate the adsorption energy of intermediate Hads effectively, and thus enable the RuSn solid-solution alloy NPs to exhibit excellent HER catalytic properties.

5.
Biol Pharm Bull ; 47(1): 49-59, 2024.
Article in English | MEDLINE | ID: mdl-38171779

ABSTRACT

The epithelial-mesenchymal transition (EMT) is a phenomenon, in which epithelial cells acquire a mesenchymal cell phenotype. It is important during wound healing; however, chronic inflammation leads to excessive EMT and causes tissue barrier dysfunction with hyperplasia. EMT is induced by several cytokines, such as interleukin (IL)-4 and IL-13. Additionally, IL-4 and IL-13 are known to increase in atopic dermatitis (AD) characterized by intense itching and eczema. Therefore, we assumed that there was commonality between the respective EMT and AD phenotypes. Herein, we evaluated EMT marker expression in AD skin and demonstrated that EMT-maker Snai1 and Twist expression were increased in AD mice model and patients with AD. Moreover, the epithelial-marker keratin 5 and mesenchymal marker Vimentin were co-expressed in the skin epidermis of mice with AD, suggesting the existence of hybrid epithelial-mesenchymal (E/M) cells possessing both epithelial and mesenchymal characteristics. In fact, we found that ΔNp63a, a stabilizing factor for hybrid E/M cells, was upregulated in the skin epidermis of the AD model mouse. Interestingly, increased expression of EMT markers was observed even at a nonlesion site in a patient with AD without initial inflammation or scratching. Therefore, EMT-like phenomena may occur independently of wound healing in skin of patients with AD.


Subject(s)
Dermatitis, Atopic , Humans , Mice , Animals , Interleukin-13 , Epidermis , Epithelial-Mesenchymal Transition/genetics , Inflammation
6.
J Am Chem Soc ; 146(1): 181-186, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38153046

ABSTRACT

High-entropy oxide nanoparticles (HEO NPs) have been intensively studied because of their attractive properties, such as high stability and enhanced catalytic activity. In this work, for the first time, denary HEO NPs were successfully synthesized using a continuous supercritical hydrothermal flow process without calcination. Interestingly, this process allows the formation of HEO NPs on the order of seconds at a relatively lower temperature. The synthesized HEO NPs contained 10 metal elements, La, Ca, Sr, Ba, Fe, Mn, Co, Ru, Pd, and Ir, and had a perovskite-type structure. Atomic-resolution high-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements revealed homogeneous dispersion of the 10 metal elements. The obtained HEO NPs also exhibited a higher catalytic activity for the CO oxidation reaction than that of the LaFeO3 NPs.

7.
J Am Chem Soc ; 145(44): 24005-24011, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37883673

ABSTRACT

Technetium (Tc), atomic number 43, is an element that humans cannot freely use even in the 21st century because Tc is radioactive and has no stable isotope. In this report, we present molybdenum-ruthenium-carbon solid-solution alloy (MoxRu1-xCy) nanoparticles (NPs) that are expected to have an electronic structure similar to that of technetium carbide (TcCy). MoxRu1-xCy NPs were synthesized by annealing under a helium/hydrogen atmosphere following thermal decomposition of metal precursors. The obtained NPs had a solid-solution structure in the whole composition range. MoxRu1-xCy with a cubic structure (down to 30 atom % Mo in the metal ratio) showed a superconducting state, and the transition temperature (Tc) increased with increasing Mo composition. The continuous change in Tc across that of TcCy indicates the continuous control of the electronic structure by solid-solution alloying, leading to pseudo-TcCy. Density functional theory calculations indicated that the synthesized Mo0.53Ru0.47C0.41 has a similar electronic structure to TcC0.41.

8.
Proc Natl Acad Sci U S A ; 120(40): e2305125120, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37748051

ABSTRACT

Conductive metal-organic frameworks (cMOFs) manifest great potential in modern electrical devices due to their porous nature and the ability to conduct charges in a regular network. cMOFs applied in electrical devices normally hybridize with other materials, especially a substrate. Therefore, the precise control of the interface between cMOF and a substrate is particularly crucial. However, the unexplored interface chemistry of cMOFs makes the controlled synthesis and advanced characterization of high-quality thin films, particularly challenging. Herein, we report the development of a simplified synthesis method to grow "face-on" and "edge-on" cMOF nanofilms on substrates, and the establishment of operando characterization methodology using atomic force microscopy and X-ray, thereby demonstrating the relationship between the soft structure of surface-mounted oriented networks and their characteristic conductive functions. As a result, crystallinity of cMOF nanofilms with a thickness down to a few nanometers is obtained, the possible growth mechanisms are proposed, and the interesting anisotropic softness-dependent conducting properties (over 2 orders of magnitude change) of the cMOF are also illustrated.

9.
Angew Chem Int Ed Engl ; 62(39): e202308438, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37534579

ABSTRACT

Porous sorbents are materials that are used for various applications, including storage and separation. Typically, the uptake of a single gas by a sorbent decreases with temperature, but the relative affinity for two similar gases does not change. However, in this study, we report a rare example of "crossover sorption," in which the uptake capacity and apparent affinity for two similar gases reverse at different temperatures. We synthesized two soft porous coordination polymers (PCPs), [Zn2 (L1)(L2)2 ]n (PCP-1) and [Zn2 (L1)(L3)2 ]n (PCP-2) (L1= 1,4-bis(4-pyridyl)benzene, L2=5-methyl-1,3-di(4-carboxyphenyl)benzene, and L3=5-methoxy-1,3-di(4-carboxyphenyl)benzene). These PCPs exhibits structural changes upon gas sorption and show the crossover sorption for both C2 H2 /CO2 and C2 H6 /C2 H4 , in which the apparent affinity reverse with temperature. We used in situ gas-loading single-crystal X-ray diffraction (SCXRD) analysis to reveal the guest inclusion structures of PCP-1 for C2 H2 , CO2 , C2 H6 , and C2 H4 gases at various temperatures. Interestingly, we observed three-step single-crystal to single-crystal (sc-sc) transformations with the different loading phases under these gases, providing insight into guest binding positions, nature of host-guest or guest-guest interactions, and their phase transformations upon exposure to these gases. Combining with theoretical investigation, we have fully elucidated the crossover sorption in the flexible coordination networks, which involves a reversal of apparent affinity and uptake of similar gases at different temperatures. We discovered that this behaviour can be explained by the delicate balance between guest binding and host-guest and guest-guest interactions.

10.
Nat Commun ; 14(1): 4245, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454124

ABSTRACT

Developing artificial porous systems with high molecular recognition performance is critical but very challenging to achieve selective uptake of a particular component from a mixture of many similar species, regardless of the size and affinity of these competing species. A porous platform that integrates multiple recognition mechanisms working cooperatively for highly efficient guest identification is desired. Here, we designed a flexible porous coordination polymer (PCP) and realised a corrugated channel system that cooperatively responds to only target gas molecules by taking advantage of its stereochemical shape, location of binding sites, and structural softness. The binding sites and structural deformation act synergistically, exhibiting exclusive discrimination gating (EDG) effect for selective gate-opening adsorption of CO2 over nine similar gas molecules, including N2, CH4, CO, O2, H2, Ar, C2H6, and even higher-affinity gases such as C2H2 and C2H4. Combining in-situ crystallographic experiments with theoretical studies, it is clear that this unparalleled ability to decipher the CO2 molecule is achieved through the coordination of framework dynamics, guest diffusion, and interaction energetics. Furthermore, the gas co-adsorption and breakthrough separation performance render the obtained PCP an efficient adsorbent for CO2 capture from various gas mixtures.


Subject(s)
Carbon Dioxide , Gases , Adsorption , Binding Sites , Biological Transport
11.
J Am Chem Soc ; 145(31): 17136-17142, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37471524

ABSTRACT

Multielement alloy nanoparticles have attracted much attention due to their attractive catalytic properties derived from the multiple interactions of adjacent multielement atoms. However, mixing multiple elements in ultrasmall nanoparticles from a wide range of elements on the periodic table is still challenging because the elements have different properties and miscibility. Herein, we developed a benchtop 4-way flow reactor for chemical synthesis of ultra-multielement alloy (UMEA) nanoparticles composed of d-block and p-block elements. BiCoCuFeGaInIrNiPdPtRhRuSbSnTi 15-element alloy nanoparticles composed of group IV to XV elements were synthesized by sequential injection of metal precursors using the reactor. This methodology realized the formation of UMEA nanoparticles at low temperature (66 °C), resulting in a 1.9 nm ultrasmall average particle size. The UMEA nanoparticles have high durability and activity for electrochemical alcohol oxidation reactions and high tolerance to CO poisoning. These results suggest that the multiple interactions of UMEA efficiently promote the multistep alcohol oxidation reaction.

12.
Chem Commun (Camb) ; 59(62): 9485-9488, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37439509

ABSTRACT

We first report the synthesis of B2-structured indium-platinum group metal high-entropy intermetallic nanoparticles (In-PGM HEI NPs). The synthesis was achieved by a wet-chemistry method and subsequent heat treatment. The crystal structure of these NPs is unique in the coexistence of completely orderly arranged indium and disorderly arranged PGMs.

13.
Anticancer Res ; 43(7): 2975-2984, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37351961

ABSTRACT

BACKGROUND/AIM: This study aimed to develop an improved algorithm for linear energy transfer (LET) estimation in carbon ion radiotherapy (CIRT) using relative biological effectiveness (RBE) and to establish a clinical pipeline for LET assessment. MATERIALS AND METHODS: New approximation functions for LET versus RBE were developed for the overkill region. LET estimation performance was examined at two facilities (A and B) using archival- and Monte Carlo simulation-derived LET data, respectively, as a reference. A clinical pipeline for LET assessment was developed using Python and treatment planning systems (TPS). RESULTS: In dataset A, LET estimation accuracy in the overkill region was improved by 80.0%. In dataset B, estimation accuracy was 2.3%±0.67% across 5 data points examined. LET distribution and LET-volume histograms were visualized for multiple CIRT plans. CONCLUSION: The new algorithm showed a greater LET estimation performance at multiple facilities using the same TPS. A clinical pipeline for LET assessment was established.


Subject(s)
Heavy Ion Radiotherapy , Proton Therapy , Humans , Linear Energy Transfer , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Algorithms , Carbon
14.
Cancers (Basel) ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37173985

ABSTRACT

Carbon-ion radiotherapy (CIRT) is one of the most effective radiotherapeutic modalities. This study aimed to select robust-beam configurations (BC) by water equivalent thickness (WET) analysis in passive CIRT for pancreatic cancer. The study analyzed 110 computed tomography (CT) images and 600 dose distributions of eight patients with pancreatic cancer. The robustness in the beam range was evaluated using both planning and daily CT images, and two robust BCs for the rotating gantry and fixed port were selected. The planned, daily, and accumulated doses were calculated and compared after bone matching (BM) and tumor matching (TM). The dose-volume parameters for the target and organs at risk (OARs) were evaluated. Posterior oblique beams (120-240°) in the supine position and anteroposterior beams (0° and 180°) in the prone position were the most robust to WET changes. The mean CTV V95% reductions with TM were -3.8% and -5.2% with the BC for gantry and the BC for fixed ports, respectively. Despite ensuring robustness, the dose to the OARs increased slightly with WET-based BCs but remained below the dose constraint. The robustness of dose distribution can be improved by BCs that are robust to ΔWET. Robust BC with TM improves the accuracy of passive CIRT for pancreatic cancer.

15.
Angew Chem Int Ed Engl ; 62(35): e202303903, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37211927

ABSTRACT

A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO 2 / H 2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}}}$ from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO2 . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.

16.
Commun Chem ; 6(1): 62, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016050

ABSTRACT

Incorporating strong electron donor functionality into flexible coordination networks is intriguing for sorption applications due to a built-in mechanism for electron-withdrawing guests. Here we report a 2D flexible porous coordination network, [Ni2(4,4'-bipyridine)(VTTF)2]n(1) (where H2VTTF = 2,2'-[1,2-bis(4-benzoic acid)-1,2ethanediylidene]bis-1,3-benzodithiole), which exhibits large structural deformation from the as-synthesized or open phase (1α) into the closed phase (1ß) after guest removal, as demonstrated by X-ray and electron diffraction. Interestingly, upon exposure to electron-withdrawing species, 1ß reversibly undergoes guest accommodation transitions; 1α⊃O2 (90 K) and 1α⊃N2O (185 K). Moreover, the 1ß phase showed exclusive O2 sorption over other gases (N2, Ar, and CO) at 120 K. The phase transformations between the 1α and 1ß phases under these gases were carefully investigated by in-situ X-ray diffraction, in-situ spectroscopic studies, and DFT calculations, validating that the unusual sorption was attributed to the combination of flexible frameworks and VTTF (electron-donor) that induces strong interactions with electron-withdrawing species.

17.
Angew Chem Int Ed Engl ; 62(2): e202215234, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36377418

ABSTRACT

Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co-pyNDI, Ni-pyNDI, and Zn-pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn-pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.

18.
J Am Chem Soc ; 144(26): 11525-11529, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35749353

ABSTRACT

High-entropy alloy nanoparticles (HEA NPs) emerged as catalysts with superior performances that are not shown in monometallic catalysts. Although many kinds of synthesis techniques of HEA NPs have been developed recently, synthesizing HEA NPs with ultrasmall particle size and narrow size distribution remains challenging because most of the reported synthesis methods require high temperatures that accelerate particle growth. This work provides a new methodology for the fabrication of ultrasmall and homogeneous HEA NPs using a continuous-flow reactor with a liquid-phase reduction method. We successfully synthesized ultrasmall IrPdPtRhRu HEA NPs (1.32 ± 0.41 nm), theoretically each consisting of approximately 50 atoms. This average size is the smallest ever reported for HEA NPs. All five elements are homogeneously mixed at the atomic level in each particle. The obtained HEA NPs marked a significantly high hydrogen evolution reaction (HER) activity with a very small 6 mV overpotential at 10 mA/cm-2 in acid, which is one-third of the overpotential of commercial Pt/C. In addition, although mass production of HEA NPs is still difficult, this flow synthesis can provide high productivity with high reproducibility, which is more energy efficient and suitable for mass production. Therefore, this study reports the 1 nm-sized HEA NPs with remarkably high HER activity and establishes a platform for the production of ultrasmall and homogeneous HEA NPs.


Subject(s)
Alloys , Nanoparticles , Catalysis , Entropy , Reproducibility of Results
19.
Chem Commun (Camb) ; 58(44): 6421-6424, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35546308

ABSTRACT

Platinum-group-metal quinary RuRhPdIrPt alloy nanoparticles were synthesised with compositions slightly away from equimolar, and their crystal and electronic structures were investigated. Their lattice constant changed linearly with composition, while the d-band centre changed nonlinearly. Their catalytic activities for the hydrogen evolution reaction were not correlated with their d-band centre.

20.
Inorg Chem ; 61(19): 7226-7230, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35506706

ABSTRACT

Recently, mixed-metal metal-organic frameworks (MOFs) have been attracting much attention in various fields. In this study, we have systematically investigated the magnetic properties of CoxNi1-x-MOF-74 [Co2xNi2(1-x)(dhtp), where H4dhtp = 2,5-dihydroxyterephthalic acid] with two different kinds of metals (Co and Ni) across the composition range 0 ≤ x ≤ 1. Bimetallic CoxNi1-x-MOF-74 (x = 0.752, 0.458, and 0.233) were successfully synthesized and confirmed to have homogeneous metal distributions. Weak ferromagnetic (canted antiferromagnetic) behavior was exhibited, while homometallic Co-MOF-74 and Ni-MOF-74 are antiferromagnetic. We also investigated the effects of C2H4 sorption on the magnetic properties and found that C2H4-adsorbed Co0.5Ni0.5-MOF-74 exhibited a change in the interchain magnetic interaction.

SELECTION OF CITATIONS
SEARCH DETAIL