Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Talanta ; 278: 126419, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38908136

ABSTRACT

Chiral resolution of racemic compounds represents an important task in research and development and, most importantly, in the large-scale production of pharmaceuticals. Zeolites, which are already frequently utilized for their unique properties, represent materials that can be used for the development of new chiral stationary phases for liquid chromatography, simulated moving bed or enantioselective membranes. The aim of this study was to modify a series of MWW zeolites by a chiral anion-exchange type selector thereby creating a chiral stationary phase for enantiomeric resolution of acidic compounds. To evaluate the applicability of the prepared chiral stationary phase in liquid chromatography, we used N-protected amino acids as model analytes. First, we tested the new sorbents preferential sorption using N-(3,5-dinitrobenzoyl)leucine. We observed outstanding sorption properties of a zeolite-based sorbent (MCM-36), which were comparable to spherical chromatographic silica. This particular material was subsequently packed into a chromatographic column, which was tested under polar organic mode HPLC conditions facilitating baseline resolution of 5 out of 8 N-protected amino acids. Although the chromatographic performance shows several drawbacks (high backpressure, low column efficiency), it clearly documents the potential of the novel materials in chiral separation. To the best of our knowledge, this is the first example of the preparation of the chiral stationary phase based on MWW zeolites ever.

2.
Beilstein J Org Chem ; 14: 2931-2939, 2018.
Article in English | MEDLINE | ID: mdl-30546477

ABSTRACT

Highly active olefin metathesis catalysts were prepared by thermal spreading MoO3 and/or MoO2(acac)2 on MWW zeolites (MCM-22, delaminated MCM-56) and on two-dimensional MFI (all in NH4 + form). The catalysts' activities were tested in the metathesis of neat 1-octene (as an example of a longer chain olefin) at 40 °C. Catalysts with 6 wt % or 5 wt % of Mo were used. The acidic character of the supports had an important effect on both the catalyst activity and selectivity. The catalyst activity increases in the order 6MoO3/HZSM-5(25) (Si/Al = 25) << 6MoO2(acac)2/MCM-22(70) < 6MoO3/2D-MFI(26) < 6MoO3/MCM-56(13) < 6MoO3/MCM-22(28) reflecting both the enhancing effect of the supports' acidity and accessibility of the catalytic species on the surface. On the other hand the supports' acidity decreases the selectivity to the main metathesis product C14 due to an acid-catalyzed double bond isomerization (followed by cross metathesis) and oligomerization. 6MoO3/2D-MFI(26) with a lower concentration of the acidic centres resulting in catalysts of moderate activity but with the highest selectivity.

3.
Dalton Trans ; 47(9): 3029-3037, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29485158

ABSTRACT

Layered zeolite materials with FER layer topology can produce various condensed and expanded structures including zeolite frameworks, FER and CDO, their interlayer expanded forms (IEZ), and organic-intercalated and pillared derivatives. This work concerns pillaring of the surfactant-swollen derivative with a gallery height of ca. 2.5 nm between layers by treatment with tetraethylorthosilicate (TEOS) at room and elevated temperatures. The materials obtained at 100 °C and higher showed unusual properties including 2 nm pores on the micro/mesoporous border and disordered layer packing indicated by the absence of distinct low angle interlayer peaks at d-spacing >3 nm (∼3° 2θ Cu Kα radiation) in the X-ray diffraction pattern (XRD). TEOS treatment at room temperature produced a pillared molecular sieve with the expected mesoporous characteristics, namely a pore size of around 3 nm and a high intensity low angle (001) peak at 2.3° 2θ, and a d-spacing of 3.8 nm, in the XRD. The characterization aiming to elucidate the nature of the obtained unusual products included gas adsorption isotherms, aberration corrected (Cs-corrected) Scanning Transmission Electron Microscopy (STEM) studies and 29Si solid state NMR. BET surface area values decreased with the temperature of TEOS treatment from approximately 1200 m2 g-1 to ∼900 and 600 m2 g-1, at room temperature, 100 °C, and 120 °C, respectively. The 29Si solid state NMR revealed the presence of both Q3 ((SiO)3SiOX, X = H or minus charge) and Q4 ((SiO)4Si) centers giving separated signals up to the pillaring step. After pillaring at 100 °C and calcination, the nominal intensity ratios Q4 : Q3 were 2.17 and 2.61 but the signals were merged into one broad peak indicating the structural heterogeneity of Si-O coordination. The microscopy showed the presence of FER layers in the samples but the overall structure and composition were not well-defined. The observed unusual disorganization and possible partial degradation of layers during pillaring may result from the combination of high temperature, alkalinity (surfactant hydroxide) and siliceous composition of the layers. The obtained pillared products are of interest for the preparation of larger pore catalysts and sorbents or controlled drug delivery.

4.
Macromol Rapid Commun ; 39(4)2018 Feb.
Article in English | MEDLINE | ID: mdl-29171703

ABSTRACT

This study reports the first Co2 (CO)8 -catalyzed [2+2+2] polycyclotrimerization by the transformation of internal ethynyl groups of aromatic diyne monomers. The reaction yields polycyclotrimers of polyphenylene-type with either hyperbranched or partly crosslinked architecture. The homopolycyclotrimerization of the monomers with two ethynyl groups per one molecule, namely 1,4-bis(phenylethynyl)benzene, 4,4'-bis(phenylethynyl)biphenyl, and 4-(phenylethynyl)phenylacetylene, gives partly crosslinked, insoluble polyphenylenes. The soluble, hyperbranched polyphenylenes are generated via copolycyclotrimerization of 1,4-bis(phenylethynyl)benzene with 1,2-diphenylacetylene (average number of ethynyl groups per monomer molecule < 2). This one-step polycyclotrimerization path to hyperbranched or partly crosslinked polyphenylenes is an alternative to the synthesis of these polymers by Diels-Alder transformation of substituted cyclopentadienones. All polyphenylenes prepared exhibit photoluminescence with emission maxima ranging from 381 to 495 nm. Polyphenylenes with a less compact packing of segments are microporous (specific surface area up to 159 m2 g-1 ), which is particularly important in the case of soluble polyphenylenes because they can be potentially used to prepare microporous layers.


Subject(s)
Diynes/chemistry , Luminescent Agents/chemistry , Macromolecular Substances/chemistry , Polymers/chemistry , Catalysis , Luminescent Agents/chemical synthesis , Macromolecular Substances/chemical synthesis , Molecular Structure , Polymerization , Porosity
5.
Beilstein J Org Chem ; 11: 2087-96, 2015.
Article in English | MEDLINE | ID: mdl-26664629

ABSTRACT

Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition.

6.
Chem Commun (Camb) ; 50(55): 7378-81, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24872251

ABSTRACT

The action of a tetrapropylammonium hydroxide solution on lamellar zeolite precursor MCM-22P produced a stable aqueous colloidal suspension which was shown by X-ray diffraction, small angle X-ray scattering and atomic force microscopy to contain ultrathin two-dimensional (2D) crystallites, including one-unit cell thick (i.e., 2.5 nm) monolayers.

7.
Angew Chem Int Ed Engl ; 53(27): 7048-52, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24825119

ABSTRACT

Hydrolysis of germanosilicate zeolites with the IWW structure shows two different outcomes depending on the composition of the starting materials. Ge-rich IWW (Si/Ge=3.1) is disassembled into a layered material (IPC-5P), which can be reassembled into an almost pure silica IWW on treatment with diethoxydimethylsilane. Ge-poor IWW (Si/Ge=6.4) is not completely disassembled on hydrolysis, but retains some 3D connectivity. This structure can be reassembled into IWW by incorporation of Al to fill the defects left when the Ge is removed.

8.
Dalton Trans ; 43(27): 10574-83, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24756195

ABSTRACT

The pore characteristics of zeolite samples including two kinds of ZSM-5 crystals as a base case and the unique mono-layered MCM-56 in different structural forms have been studied by the new method QE-TPDA (quasi-equilibrated temperature-programmed desorption and adsorption) in comparison with the standard nitrogen adsorption. Both approaches produce consistent results in terms of micro- and meso-porous features as well as quantitative pore volume values. The benefits of QE-TPDA include fast data acquisition (hours) and small sample size (milligrams). It is very flexible in using various hydrocarbons as probe molecules, which may reveal additional details associated with pores, their internal environment and dimensions/shape of the sorbate molecules. Hence, QE-TPDA is a valuable complementary tool for porosity characterization of the ever increasing diversity of porous materials and their pore structures. This was demonstrated by the results for the desorption of nonane and 2,2-dimethyloctane (DMO). The latter showed an additional maximum in the intermediate temperature range (between 'micro-' and 'mesopore' regions) which could be attributed to adsorption in the subsurface micropores (i.e. the pore mouths) where DMO could be partially adsorbed with t-butyl groups remaining on the outside. This was also reflected in the discrepancy between apparent volumes of micro- and mesopores calculated from the nonane and DMO experiments. Pillared MCM-56 revealed visibly enhanced subsurface micropore adsorption compared to the parent (mono-layer MWW) and MCM-22 (multi-layered MWW) consistent with the expected increase in the content of external 12 ring surface cups.

9.
Dalton Trans ; 43(27): 10558-65, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24728402

ABSTRACT

The porous structure of pillared zeolites IPC-3PI and MCM-36 and their precursors IPC-3P and MCM-22P, respectively, has been investigated by means of a high-resolution adsorption analysis. The analysis was based on argon adsorption isotherms measured at 87 K from the relative pressure of 10(-6). The isotherms were processed by means of the t-plot method, which made it possible to distinguish adsorption in micropores from adsorption in mesopores. The pore size distribution was evaluated from argon isotherms using Non-Local Density Functional Theory. The obtained results have shown that the microporous structure of the MWW layers is preserved in both pillared zeolites. In contrast to precursors IPC-3P and MCM-22P, pillared samples are characterized by the formation of a porous structure belonging to the lower mesopore region. The distribution of mesopores in the zeolite IPC-3PI is broader and is shifted to larger widths in comparison with the zeolite MCM-36.

10.
Dalton Trans ; 43(27): 10501-11, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24658596

ABSTRACT

The unilamellar form of zeolite MWW, MCM-56, which is obtained by direct hydrothermal synthesis has been studied with regard to acidity and porosity in its original and post-synthesis modified pillared and delaminated forms. The acidity measured by FTIR was found to be only slightly lower than the highly active 3-D MWW forms, MCM-22 and MCM-49. Pivalonitrile adsorption, which is a measure of spatial openness, showed 50% accessibility vs. <30% for MCM-22/49. It highlights the potential of MCM-56 as a layered material with increased access to acid sites because it does not entail laborious post-synthesis modification. Swelling, pillaring and delamination of MCM-56 are facile but result in a reduction in the number of Brønsted acid sites (BAS) while increasing accessibility to pivalonitrile. The delamination procedure involving sonication and acidification of the highly basic mother liquor produces the most visible increase in surface area and access to all BAS. The accompanying doubling of the solid yield and the decrease in absolute number of BAS suggest significant precipitation of dissolved silica generated during swelling and sonication in high pH medium. The viability of separating surfactant covered layers upon sonication with the consequence of exposing hydrophobic hydrocarbon tails to aqueous environment is addressed.

11.
Chemistry ; 19(41): 13937-45, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24038214

ABSTRACT

The crystallization of zeolite TUN with 1,4-bis(N-methylpyrrolidinium)butane as template proceeds through an intermediate, designated IPC-3P, following the Ostwald rule of successive transformations. This apparently layered transient product has been thoroughly investigated and found to consist of MWW monolayers stacked without alignment in register, that is, disordered compared with MCM-22P. The structure was confirmed based on X-ray diffraction and high-resolution (HR)TEM analysis. The layered zeolite precursor IPC-3P can be swollen and pillared affording a combined micro- and mesoporous material with enhanced Brunauer-Emmett-Teller (BET) surface area (685 m(2) g(-1) ) and greater accessibility of Brønsted acid sites for bulky molecules. This mesoporous material was probed with 2,6-di-tert-butylpyridine (DTBP). IPC-3P and its modification create a new layered zeolite sub-family belonging to the MWW family. FTIR data indicate that (Al)MWW materials MCM-22 and IPC-3 with Si/Al ratios greater than 20 exhibit a lower relative ratio of Brønsted to Lewis acid sites than MCM-22 (with Si/Al ratios of around 13), that is, less than 2 versus more than 3, respectively. This is maintained even upon pillaring and warrants further exploration of materials like IPC-3P with a higher Al content. The unique XRD features of IPC-3P indicating misaligned stacking of layers and distinct from MCM-22P, are also seen in other MWW materials such as EMM-10P, hexamethonium-templated (HM)-MCM-22, ITQ-30, and UZM-8 suggesting the need for more detailed study of their identity and properties.

12.
J Am Chem Soc ; 133(16): 6130-3, 2011 Apr 27.
Article in English | MEDLINE | ID: mdl-21456511

ABSTRACT

Mild treatment of zeolite UTL results in degradation of its structure with preservation of the initially present dense layers connected by D4R "bridges". The lamellar product obtained through this 3D to 2D zeolite conversion has been structurally modified similar to methodologies applied to layered zeolite precursors, which show the opposite 2D to 3D zeolite transformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...