Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 23(15): 3361-3369, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37401915

ABSTRACT

Mass spectrometry (MS) enables detection of different chemical species with a very high specificity; however, it can be limited by its throughput. Integrating MS with microfluidics has a tremendous potential to improve throughput and accelerate biochemical research. In this work, we introduce Drop-NIMS, a combination of a passive droplet loading microfluidic device and a matrix-free MS laser desorption ionization technique called nanostructure-initiator mass spectrometry (NIMS). This platform combines different droplets at random to generate a combinatorial library of enzymatic reactions that are deposited directly on the NIMS surface without requiring additional sample handling. The enzyme reaction products are then detected with MS. Drop-NIMS was used to rapidly screen enzymatic reactions containing low (on the order of nL) volumes of glycoside reactants and glycoside hydrolase enzymes per reaction. MS "barcodes" (small compounds with unique masses) were added to the droplets to identify different combinations of substrates and enzymes created by the device. We assigned xylanase activities to several putative glycoside hydrolases, making them relevant to food and biofuel industrial applications. Overall, Drop-NIMS is simple to fabricate, assemble, and operate and it has potential to be used with many other small molecule metabolites.


Subject(s)
Glycoside Hydrolases , Nanostructures , Mass Spectrometry/methods , Glycoside Hydrolases/metabolism , Nanostructures/chemistry , Lab-On-A-Chip Devices , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
J Biol Chem ; 299(5): 104655, 2023 05.
Article in English | MEDLINE | ID: mdl-36990218

ABSTRACT

Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability. This study examines a GH9 from Acetovibrio thermocellus ATCC 27405, AtCelR containing a catalytic domain and a carbohydrate binding module (CBM3c). Crystal structures of the enzyme without substrate, bound to cellohexaose (substrate) or cellobiose (product), show the positioning of ligands to calcium and adjacent residues in the catalytic domain that may contribute to substrate binding and facilitate product release. We also investigated the properties of the enzyme engineered to contain an additional carbohydrate binding module (CBM3a). Relative to the catalytic domain alone, CBM3a gave improved binding for Avicel (a crystalline form of cellulose), and catalytic efficiency (kcat/KM) was improved 40× with both CBM3c and CBM3a present. However, because of the molecular weight added by CBM3a, the specific activity of the engineered enzyme was not increased relative to the native construct consisting of only the catalytic and CBM3c domains. This work provides new insight into a potential role of the conserved calcium in the catalytic domain and identifies contributions and limitations of domain engineering for AtCelR and perhaps other GH9 enzymes.


Subject(s)
Calcium , Cellulase , Calcium/metabolism , Catalytic Domain , Cellulase/chemistry , Cellulase/metabolism , Cellulose/chemistry , Cellulose/metabolism , Substrate Specificity , Ligands , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Protein Domains
3.
ACS Sustain Chem Eng ; 8(16): 6551-6563, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-34484989

ABSTRACT

Enzymes selectively hydrolyze the carbohydrate fractions of lignocellulosic biomass into corresponding sugars, but these processes are limited by low yields and slow catalytic turnovers. Under certain conditions, the rates and yields of enzymatic sugar production can be increased by pretreating biomass using solvents, heat and dilute acid catalysts. However, the mechanistic details underlying this behavior are not fully elucidated, and designing effective pretreatment strategies remains an empirical challenge. Herein, using a combination of solid-state and high-resolution magic-angle-spinning NMR, infrared spectroscopy and X-ray diffractometry, we show that the extent to which cellulase enzymes are able to hydrolyze solvent-pretreated biomass can be understood in terms of the ability of the solvent to break the chemical linkages between cellulose and non-cellulosic materials in the cell wall. This finding is of general significance to enzymatic biomass conversion research, and implications for designing improved biomass conversion strategies are discussed. These findings demonstrate the utility of solid-state NMR as a tool to elucidate the key chemical and physical changes that occur during the liquid-phase conversion of real biomass.

SELECTION OF CITATIONS
SEARCH DETAIL
...