Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-37609141

ABSTRACT

Cancer cells are often aneuploid and frequently display elevated rates of chromosome missegregation in a phenomenon called chromosomal instability (CIN). CIN is commonly caused by hyperstable kinetochore-microtubule (K-MT) attachments that reduces the efficiency of correction of erroneous K-MT attachments. We recently showed that UMK57, a chemical agonist of MCAK (alias KIF2C) improves chromosome segregation fidelity in CIN cancer cells although cells rapidly develop adaptive resistance. To determine the mechanism of resistance we performed unbiased proteomic screens which revealed increased phosphorylation in cells adapted to UMK57 at two Aurora kinase A phosphoacceptor sites on BOD1L1 (alias FAM44A). BOD1L1 depletion or Aurora kinase A inhibition eliminated resistance to UMK57 in CIN cancer cells. BOD1L1 localizes to spindles/kinetochores during mitosis, interacts with the PP2A phosphatase, and regulates phosphorylation levels of kinetochore proteins, chromosome alignment, mitotic progression and fidelity. Moreover, the BOD1L1 gene is mutated in a subset of human cancers, and BOD1L1 depletion reduces cell growth in combination with clinically relevant doses of taxol or Aurora kinase A inhibitor. Thus, an Aurora kinase A -BOD1L1-PP2A axis promotes faithful chromosome segregation during mitosis.

2.
J Cell Biol ; 221(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35878017

ABSTRACT

Kinetochore protein phosphorylation promotes the correction of erroneous microtubule attachments to ensure faithful chromosome segregation during cell division. Determining how phosphorylation executes error correction requires an understanding of whether kinetochore substrates are completely (i.e., all-or-none) or only fractionally phosphorylated. Using quantitative mass spectrometry (MS), we measured phospho-occupancy on the conserved kinetochore protein Hec1 (NDC80) that directly binds microtubules. None of the positions measured exceeded ∼50% phospho-occupancy, and the cumulative phospho-occupancy changed by only ∼20% in response to changes in microtubule attachment status. The narrow dynamic range of phospho-occupancy is maintained, in part, by the ongoing phosphatase activity. Further, both Cdk1-Cyclin B1 and Aurora kinases phosphorylate Hec1 to enhance error correction in response to different types of microtubule attachment errors. The low inherent phospho-occupancy promotes microtubule attachment to kinetochores while the high sensitivity of kinetochore-microtubule attachments to small changes in phospho-occupancy drives error correction and ensures high mitotic fidelity.


Subject(s)
Cytoskeletal Proteins , Kinetochores , Microtubules , Mitosis , Aurora Kinases/metabolism , CDC2 Protein Kinase/metabolism , Chromosome Segregation , Cyclin B1/metabolism , Cytoskeletal Proteins/metabolism , HeLa Cells , Humans , Kinetochores/metabolism , Microtubules/metabolism , Phosphorylation
3.
Cell Rep ; 33(1): 108230, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33027666

ABSTRACT

mTOR is a serine/threonine kinase and a master regulator of cell growth and proliferation. Raptor, a scaffolding protein that recruits substrates to mTOR complex 1 (mTORC1), is known to be phosphorylated during mitosis, but the significance of this phosphorylation remains largely unknown. Here we show that raptor expression and mTORC1 activity are dramatically reduced in cells arrested in mitosis. Expression of a non-phosphorylatable raptor mutant reactivates mTORC1 and significantly reduces cytotoxicity of the mitotic poison Taxol. This effect is mediated via degradation of PDCD4, a tumor suppressor protein that inhibits eIF4A activity and is negatively regulated by the mTORC1/S6K pathway. Moreover, pharmacological inhibition of eIF4A is able to enhance the effects of Taxol and restore sensitivity in Taxol-resistant cancer cells. These findings indicate that the mTORC1/S6K/PDCD4/eIF4A axis has a pivotal role in the death versus slippage decision during mitotic arrest and may be exploited clinically to treat tumors resistant to anti-mitotic agents.


Subject(s)
Mitosis/genetics , TOR Serine-Threonine Kinases/metabolism , HeLa Cells , Humans , Treatment Outcome
5.
Am J Hum Genet ; 105(3): 625-630, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31303264

ABSTRACT

Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/genetics , Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome/genetics , Mutation , Rothmund-Thomson Syndrome/genetics , Humans
6.
Cell Rep ; 18(8): 1982-1995, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228263

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that targets substrates for degradation to promote mitotic progression. Here, we show that the DNA damage response protein 53BP1 contains conserved KEN boxes that are required for APC/C-dependent degradation in early mitosis. Mutation of the 53BP1 KEN boxes stabilized the protein and extended mitotic duration, whereas 53BP1 knockdown resulted in a shorter and delayed mitosis. Loss of 53BP1 increased APC/C activity, and we show that 53BP1 is a direct APC/C inhibitor. Although 53BP1 function is not absolutely required for normal cell cycle progression, knockdown was highly toxic in combination with mitotic spindle poisons. Moreover, chemical inhibition of the APC/C was able to rescue the lethality of 53BP1 loss. Our findings reveal a reciprocal regulation between 53BP1 and APC/C that is required for response to mitotic stress and may contribute to the tumor-suppressor functions of 53BP1.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Genomic Instability/genetics , Mitosis/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Spindle Apparatus/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
J Virol ; 90(20): 9433-45, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27512067

ABSTRACT

UNLABELLED: Chicken anemia virus (CAV) is a single-stranded circular DNA virus that carries 3 genes, the most studied of which is the gene encoding VP3, also known as apoptin. This protein has been demonstrated to specifically kill transformed cells while leaving normal cells unharmed in a manner that is independent of p53 status. Although the mechanistic basis for this differential activity is unclear, it is evident that the subcellular localization of the protein is important for the difference. In normal cells, apoptin exists in filamentous networks in the cytoplasm, whereas in transformed cells, apoptin is present in the nucleus and appears as distinct foci. We have previously demonstrated that DNA damage signaling through the ataxia telangiectasia mutated (ATM) pathway induces the translocation of apoptin from the cytoplasm to the nucleus, where it induces apoptosis. We found that apoptin contains four checkpoint kinase consensus sites and that mutation of either threonine 56 or 61 to alanine restricts apoptin to the cytoplasm. Furthermore, treatment of tumor cells expressing apoptin with inhibitors of checkpoint kinase 1 (Chk1) and Chk2 causes apoptin to localize to the cytoplasm. Importantly, silencing of Chk2 rescues cancer cells from the cytotoxic effects of apoptin. Finally, treatment of virus-producing cells with Chk inhibitor protects them from virus-mediated toxicity and reduces the titer of progeny virus. Taken together, our results indicate that apoptin is a sensor of DNA damage signaling through the ATM-Chk2 pathway, which induces it to migrate to the nucleus during viral replication. IMPORTANCE: The chicken anemia virus (CAV) protein apoptin is known to induce tumor cell-specific death when expressed. Therefore, understanding its regulation and mechanism of action could provide new insights into tumor cell biology. We have determined that checkpoint kinase 1 and 2 signaling is important for apoptin regulation and is a likely feature of both tumor cells and host cells producing virus progeny. Inhibition of checkpoint signaling prevents apoptin toxicity in tumor cells and attenuates CAV replication, suggesting it may be a future target for antiviral therapy.


Subject(s)
Apoptosis/genetics , Capsid Proteins/genetics , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 2/metabolism , Chicken anemia virus/genetics , Phosphorylation/genetics , Virus Replication/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , Cytoplasm/genetics , Cytoplasm/metabolism , Cytoplasm/virology , DNA Damage/genetics , Humans , Neoplasms/metabolism , Neoplasms/virology , Signal Transduction/genetics
8.
J Virol ; 89(8): 4685-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25653433

ABSTRACT

The adenovirus E4orf4 protein expressed at high levels kills cancer cells but not normal human primary cells. Previous studies suggested that disruption of processes that regulate mitosis may underlie E4orf4 toxicity. Here we have used live imaging to show that E4orf4 induces a slowed defective transit through mitosis, exhibiting a delay or often failure in cytokinesis that may account for an accumulation of G1 tetraploids in the population of dying E4orf4-expressing cells.


Subject(s)
Mitosis/physiology , Molecular Imaging/methods , Viral Proteins/physiology , Viral Proteins/ultrastructure , Cell Line, Tumor , Flow Cytometry , Humans , Time-Lapse Imaging
9.
J Virol ; 88(22): 13249-59, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25210169

ABSTRACT

UNLABELLED: Adenovirus type 5 E4orf4 is a multifunctional protein that regulates viral gene expression. The activities of E4orf4 are mainly mediated through binding to protein phosphatase 2A (PP2A). E4orf4 recruits target phosphoproteins into complexes with PP2A, resulting in dephosphorylation of host factors, such as SR splicing factors. In the current study, we utilized immunoprecipitation followed by mass spectrometry to identify novel E4orf4-interacting proteins. In this manner we identified Nup205, a component of the nuclear pore complex (NPC) as an E4orf4 interacting partner. The arginine-rich motif (ARM) of E4orf4 was required for interaction with Nup205 and for nuclear localization of E4orf4. ARMs are commonly found on viral nuclear proteins, and we observed that Nup205 interacts with three different nuclear viral proteins containing ARMs. E4orf4 formed a trimolecular complex containing both Nup205 and PP2A. Furthermore, Nup205 complexed with E4orf4 was hypophosphorylated, suggesting that the protein is specifically targeted for dephosphorylation. An adenovirus mutant that does not express E4orf4 (Orf4(-)) displayed elevated early and reduced late gene expression relative to that of the wild type. We observed that knockdown of Nup205 resulted in the same phenotype as that of the Orf4(-) virus, suggesting that the proteins function as a complex to regulate viral gene expression. Furthermore, knockdown of Nup205 resulted in a more than a 4-fold reduction in the replication of wild-type adenovirus. Our data show for first time that Ad5 E4orf4 interacts with and modifies the NPC and that Nup205-E4orf4 binding is required for normal regulation of viral gene expression and viral replication. IMPORTANCE: Nuclear pore complexes (NPCs) are highly regulated conduits in the nuclear membrane that control transport of macromolecules between the nucleus and cytoplasm. Viruses that replicate in the nucleus must negotiate the NPC during nuclear entry, and viral DNA, mRNA, and proteins must then be exported from the nucleus. Several types of viruses restructure the NPC to facilitate replication, and the current study shows that adenovirus type 5 (Ad5) utilizes a novel mechanism to modify NPC function. We demonstrate that a subunit of the NPC, Nup205, is a phosphoprotein that is actively dephosphorylated by the Ad5-encoded protein E4orf4. Moreover, Nup205 is required by Ad5 to regulate viral gene expression and efficient viral replication. Nup205 is a nonstructural subunit that is responsible for the gating functions of the NPC, and this study suggests for the first time that the NPC is regulated by phosphorylation both during normal physiology and viral infection.


Subject(s)
Adenoviruses, Human/physiology , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Nuclear Pore Complex Proteins/metabolism , Protein Interaction Mapping , Viral Proteins/metabolism , Adenoviruses, Human/genetics , Cell Line , Humans , Immunoprecipitation , Mass Spectrometry , Multienzyme Complexes , Protein Binding , Protein Phosphatase 2/metabolism , Protein Processing, Post-Translational , Protein Transport , Virus Replication
10.
J Virol ; 85(23): 12638-49, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21937663

ABSTRACT

The chicken anemia virus (CAV) protein Apoptin is a small, 13.6-kDa protein that has the intriguing activity of inducing G(2)/M arrest and apoptosis specifically in cancer cells by a mechanism that is independent of p53. The activity of Apoptin is regulated at the level of localization. Whereas Apoptin is cytoplasmic in primary cells and does not affect cell growth, in transformed cells it localizes to the nucleus, where it induces apoptosis. The properties of cancer cells that are responsible for activating the proapoptotic activities of Apoptin remain unclear. In the current study, we show that DNA damage response (DDR) signaling is required to induce Apoptin nuclear localization in primary cells. Induction of DNA damage in combination with Apoptin expression was able to induce apoptosis in primary cells. Conversely, chemical or RNA interference (RNAi) inhibition of DDR signaling by ATM and DNA-dependent protein kinase (DNA-PK) was sufficient to cause Apoptin to localize in the cytoplasm of transformed cells. Furthermore, the nucleocytoplasmic shuttling activity of Apoptin is required for DDR-induced changes in localization. Interestingly, nuclear localization of Apoptin in primary cells was able to inhibit the formation of DNA damage foci containing 53BP1. Apoptin has been shown to bind and inhibit the anaphase-promoting complex/cyclosome (APC/C). We observe that Apoptin is able to inhibit formation of DNA damage foci by targeting the APC/C-associated factor MDC1 for degradation. We suggest that these results may point to a novel mechanism of DDR inhibition during viral infection.


Subject(s)
Apoptosis , Capsid Proteins/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , DNA Damage/drug effects , Signal Transduction , Active Transport, Cell Nucleus , Adenoviridae/genetics , Antibiotics, Antineoplastic/pharmacology , Bleomycin/pharmacology , Blotting, Western , Capsid Proteins/antagonists & inhibitors , Capsid Proteins/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Nucleus/drug effects , Cells, Cultured , Chicken anemia virus , Cytoplasm/drug effects , DNA Damage/genetics , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Lung/cytology , Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering/genetics , Subcellular Fractions
11.
J Virol ; 82(18): 9023-34, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18632865

ABSTRACT

Enzootic nasal tumor virus (ENTV) is a close relative of jaagsiekte sheep retrovirus (JSRV), and the two viruses use the same receptor, hyaluronidase 2 (Hyal2), for cell entry. We report here that, unlike the JSRV envelope (Env) protein, the ENTV Env protein does not induce cell fusion at pHs of 5.0 and above but requires a much lower pH (4.0 to 4.5) for fusion to occur. The entry of ENTV Env pseudovirions was substantially inhibited by bafilomycin A1 (BafA1) but was surprisingly enhanced by lysosomotropic agents and lysosomal protease inhibitors following a 4- to 6-h treatment period; of note, prolonged treatment with BafA1 or ammonium chloride completely blocked ENTV entry. Unlike typical pH-dependent viruses, ENTV Env pseudovirions were virtually resistant to inactivation at a low pH (4.5 or 5.0). Using chimeras formed from ENTV and JSRV Env proteins, we demonstrated that the transmembrane (TM) subunit of ENTV Env is primarily responsible for its unusually low pH requirement for fusion but found that the surface (SU) subunit of ENTV Env also critically influences its relatively low and pH-dependent fusion activity. Furthermore, the poor infectivity of ENTV pseudovirions in human cells was significantly improved by either replacing the SU subunit of ENTV Env with that of JSRV Env or overexpressing the functional Hyal2 receptor in target cells, suggesting that ENTV SU-Hyal2 interaction is likely to be the limiting step for viral infectivity. Collectively, our data reveal that the fusogenicity of ENTV Env is intrinsically lower than that of JSRV Env and that ENTV requires a more acidic pH for fusion, which may occur in an intracellular compartment(s) distinct from that used by JSRV.


Subject(s)
Betaretrovirus/physiology , Betaretrovirus/pathogenicity , Gene Products, env/metabolism , Membrane Fusion/physiology , Animals , Betaretrovirus/genetics , Betaretrovirus/metabolism , Cell Fusion , Cell Line , Gene Products, env/genetics , Giant Cells/physiology , Humans , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism , Hydrogen-Ion Concentration , Macrolides/pharmacology , Mice , NIH 3T3 Cells , Receptors, Virus/genetics , Receptors, Virus/metabolism , Virion/genetics , Virion/metabolism , Virion/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...