Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Blood ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905635

ABSTRACT

The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) AML cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent anti-proliferative activity across several AML and ALL cell lines and patient samples harboring KMT2A- or NPM1-alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent anti-proliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A co-crystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory (R/R) acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).

2.
Nat Commun ; 8: 14206, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198360

ABSTRACT

The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion.


Subject(s)
Chloride Channels/metabolism , Disease Progression , Glutathione/metabolism , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Extracellular Matrix/metabolism , Female , GTP-Binding Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice, Inbred C57BL , Mice, Nude , Models, Biological , Neoplasm Invasiveness , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Oxidoreductases/metabolism , Protein Binding , Protein Glutamine gamma Glutamyltransferase 2 , Proteome/metabolism , Proteomics , Survival Analysis , Transglutaminases/metabolism , Treatment Outcome
3.
Cancer Cell ; 30(6): 968-985, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27866851

ABSTRACT

Abnormal tumor vessels promote metastasis and impair chemotherapy. Hence, tumor vessel normalization (TVN) is emerging as an anti-cancer treatment. Here, we show that tumor endothelial cells (ECs) have a hyper-glycolytic metabolism, shunting intermediates to nucleotide synthesis. EC haplo-deficiency or blockade of the glycolytic activator PFKFB3 did not affect tumor growth, but reduced cancer cell invasion, intravasation, and metastasis by normalizing tumor vessels, which improved vessel maturation and perfusion. Mechanistically, PFKFB3 inhibition tightened the vascular barrier by reducing VE-cadherin endocytosis in ECs, and rendering pericytes more quiescent and adhesive (via upregulation of N-cadherin) through glycolysis reduction; it also lowered the expression of cancer cell adhesion molecules in ECs by decreasing NF-κB signaling. PFKFB3-blockade treatment also improved chemotherapy of primary and metastatic tumors.


Subject(s)
Cisplatin/administration & dosage , Epithelial Cells/metabolism , Neoplasms/metabolism , Phosphofructokinase-2/antagonists & inhibitors , Tamoxifen/administration & dosage , Animals , Cadherins/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cisplatin/pharmacology , Drug Synergism , Drug Therapy , Epithelial Cells/pathology , Gene Expression Regulation, Neoplastic/drug effects , Glycolysis/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Transplantation , Neoplasms/blood supply , Neoplasms/drug therapy , Tamoxifen/pharmacology
4.
Nature ; 537(7618): 63-68, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27533040

ABSTRACT

Hypermethylation of the promoters of tumour suppressor genes represses transcription of these genes, conferring growth advantages to cancer cells. How these changes arise is poorly understood. Here we show that the activity of oxygen-dependent ten-eleven translocation (TET) enzymes is reduced by tumour hypoxia in human and mouse cells. TET enzymes catalyse DNA demethylation through 5-methylcytosine oxidation. This reduction in activity occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, hypoxia-inducible factor activity or reactive oxygen species, and depends directly on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. In patients, tumour suppressor gene promoters are markedly more methylated in hypoxic tumour tissue, independent of proliferation, stromal cell infiltration and tumour characteristics. Our data suggest that up to half of hypermethylation events are due to hypoxia, with these events conferring a selective advantage. Accordingly, increased hypoxia in mouse breast tumours increases hypermethylation, while restoration of tumour oxygenation abrogates this effect. Tumour hypoxia therefore acts as a novel regulator of DNA methylation.


Subject(s)
DNA Methylation , DNA-Binding Proteins/deficiency , Mixed Function Oxygenases/deficiency , Oxygen/metabolism , Proto-Oncogene Proteins/deficiency , Tumor Hypoxia/physiology , 5-Methylcytosine/metabolism , Animals , Cell Proliferation , DNA Methylation/drug effects , DNA Methylation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Female , Gene Silencing/drug effects , Genes, Tumor Suppressor , Humans , Male , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mice , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oxidation-Reduction/drug effects , Oxygen/pharmacology , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Stromal Cells/pathology , Tumor Hypoxia/drug effects , Tumor Hypoxia/genetics
5.
Nat Commun ; 7: 12240, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27436424

ABSTRACT

During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases.


Subject(s)
Glycolysis , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic , Adenosine Triphosphate/metabolism , Antigens, CD/metabolism , Cadherins/antagonists & inhibitors , Cadherins/metabolism , Computer Simulation , Gene Knockdown Techniques , Glycolysis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Indoles/pharmacology , Models, Biological , Neovascularization, Physiologic/drug effects , Phosphofructokinase-2/antagonists & inhibitors , Phosphofructokinase-2/metabolism , Pseudopodia/drug effects , Pseudopodia/metabolism , Pyridines/pharmacology , Pyrroles/pharmacology , Vascular Endothelial Growth Factor A/metabolism
6.
Mol Cell Oncol ; 3(1): e970097, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27308577

ABSTRACT

Chloroquine is used clinically as an autophagy blocker to potentiate anticancer treatments. However, whether chloroquine acts solely through autophagy-dependent and cancer cell autonomous mechanisms has remained elusive. In a recent study we found that chloroquine reduced intratumoral hypoxia and metastasis, while improving chemotherapy response, largely through an autophagy-independent, NOTCH1-reliant mechanism of tumor vessel normalization.

8.
Cell Rep ; 12(6): 992-1005, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26235614

ABSTRACT

Several questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth. Second, it is unknown whether PHD2 regulates cancer by affecting cancer-associated fibroblasts (CAFs). We show that PHD2 haplodeficiency reduced metastasis via two mechanisms: (1) by decreasing CAF activation, matrix production, and contraction by CAFs, an effect that surprisingly relied on PHD2 deletion in cancer cells, but not in CAFs; and (2) by improving tumor vessel normalization. Third, the effect of concomitant PHD2 inhibition in malignant and stromal cells (mimicking PHD2 inhibitor treatment) is unknown. We show that global PHD2 haplodeficiency, induced not only before but also after tumor onset, impaired metastasis. These findings warrant investigation of PHD2's therapeutic potential.


Subject(s)
Fibroblasts/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Neoplasms/metabolism , Animals , Cell Line, Tumor , Female , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Immunoblotting , Immunohistochemistry , Male , Mice , Models, Biological , Neoplasm Metastasis , Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction
9.
Autophagy ; 10(11): 2082-4, 2014.
Article in English | MEDLINE | ID: mdl-25484095

ABSTRACT

Chloroquine (CQ) is exploited in clinical trials as an autophagy blocker to potentiate anticancer therapy, but it is unknown if it solely acts by inhibiting cancer cell-autonomous autophagy. Our recent study shows that besides blocking cancer cell growth, CQ also affects endothelial cells (ECs) and promotes tumor vessel normalization. This vessel normalizing effect of CQ reduces tumor hypoxia, cancer cell intravasation, and metastasis, while improving the delivery and response to chemotherapy. By compromising autophagy in melanoma cells or using mice with a conditional knockout of ATG5 in ECs, we found that the favorable effects of CQ on the tumor vasculature do not rely on autophagy. CQ-induced vessel normalization relies mainly on altered endolysosomal trafficking and sustained NOTCH1 signaling in ECs. Remarkably these CQ-mediated effects are abrogated when tumors are grown in mice harboring EC-specific deletion of NOTCH1. The autophagy-independent vessel normalization by CQ leading to improved delivery and tumor response to chemotherapy further advocates its clinical use in combination with anticancer treatments.


Subject(s)
Antimalarials/chemistry , Autophagy , Chloroquine/chemistry , Neoplasms/drug therapy , Animals , Endosomes/metabolism , Gene Deletion , Humans , Hypoxia , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/pathology , Receptor, Notch1/metabolism
10.
Cancer Cell ; 26(2): 190-206, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25117709

ABSTRACT

Chloroquine (CQ) has been evaluated as an autophagy blocker for cancer treatment, but it is unknown if it acts solely by inhibiting cancer cell autophagy. We report that CQ reduced tumor growth but improved the tumor milieu. By normalizing tumor vessel structure and function and increasing perfusion, CQ reduced hypoxia, cancer cell invasion, and metastasis, while improving chemotherapy delivery and response. Inhibiting autophagy in cancer cells or endothelial cells (ECs) failed to induce such effects. CQ's vessel normalization activity relied mainly on alterations of endosomal Notch1 trafficking and signaling in ECs and was abrogated by Notch1 deletion in ECs in vivo. Thus, autophagy-independent vessel normalization by CQ restrains tumor invasion and metastasis while improving chemotherapy, supporting the use of CQ for anticancer treatment.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Autophagy , Chloroquine/pharmacology , Melanoma, Experimental/drug therapy , Neovascularization, Pathologic/prevention & control , Skin Neoplasms/drug therapy , Angiogenesis Inhibitors/therapeutic use , Animals , Autophagy-Related Protein 5 , Camptothecin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Chloroquine/therapeutic use , Drug Synergism , Endothelial Cells/drug effects , Endothelial Cells/physiology , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Humans , Melanoma, Experimental/blood supply , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Nude , Microtubule-Associated Proteins/metabolism , Neoplasm Invasiveness , Neovascularization, Pathologic/metabolism , Receptor, Notch1/metabolism , Skin Neoplasms/blood supply , Skin Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
11.
Nature ; 511(7508): 167-76, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25008522

ABSTRACT

Cancer cells have been at the centre of cell metabolism research, but the metabolism of stromal and immune cells has received less attention. Nonetheless, these cells influence the progression of malignant, inflammatory and metabolic disorders. Here we discuss the metabolic adaptations of stromal and immune cells in health and disease, and highlight how metabolism determines their differentiation and function.


Subject(s)
Macrophages/metabolism , Stromal Cells/metabolism , T-Lymphocytes/metabolism , Animals , Cell Differentiation , Endothelial Cells/cytology , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Glycolysis , Humans , Macrophages/cytology , Neoplasms/metabolism , Neoplasms/pathology , Stromal Cells/cytology , Stromal Cells/enzymology , T-Lymphocytes/cytology
12.
Cell Rep ; 6(1): 155-67, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24388748

ABSTRACT

Various tumors metastasize via lymph vessels and lymph nodes to distant organs. Even though tumors are hypoxic, the mechanisms of how hypoxia regulates lymphangiogenesis remain poorly characterized. Here, we show that hypoxia reduced vascular endothelial growth factor C (VEGF-C) transcription and cap-dependent translation via the upregulation of hypophosphorylated 4E-binding protein 1 (4E-BP1). However, initiation of VEGF-C translation was induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. IRES-dependent VEGF-C translation was independent of hypoxia-inducible factor 1α (HIF-1α) signaling. Notably, the VEGF-C IRES activity was higher in metastasizing tumor cells in lymph nodes than in primary tumors, most likely because lymph vessels in these lymph nodes were severely hypoxic. Overall, this transcription-independent but translation-dependent upregulation of VEGF-C in hypoxia stimulates lymphangiogenesis in tumors and lymph nodes and may contribute to lymphatic metastasis.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma/metabolism , Cell Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Protein Biosynthesis , Vascular Endothelial Growth Factor C/metabolism , 3' Untranslated Regions , Adaptor Proteins, Signal Transducing/metabolism , Animals , Breast Neoplasms/diagnosis , Carcinoma/diagnosis , Cell Cycle Proteins , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Mice , Mice, Inbred C57BL , Mice, Nude , Phosphoproteins/metabolism , Transcription, Genetic , Vascular Endothelial Growth Factor C/genetics
13.
Cell Metab ; 19(1): 37-48, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24332967

ABSTRACT

Strategies targeting pathological angiogenesis have focused primarily on blocking vascular endothelial growth factor (VEGF), but resistance and insufficient efficacy limit their success, mandating alternative antiangiogenic strategies. We recently provided genetic evidence that the glycolytic activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) promotes vessel formation but did not explore the antiangiogenic therapeutic potential of PFKFB3 blockade. Here, we show that blockade of PFKFB3 by the small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) reduced vessel sprouting in endothelial cell (EC) spheroids, zebrafish embryos, and the postnatal mouse retina by inhibiting EC proliferation and migration. 3PO also suppressed vascular hyperbranching induced by inhibition of Notch or VEGF receptor 1 (VEGFR1) and amplified the antiangiogenic effect of VEGF blockade. Although 3PO reduced glycolysis only partially and transiently in vivo, this sufficed to decrease pathological neovascularization in ocular and inflammatory models. These insights may offer therapeutic antiangiogenic opportunities.


Subject(s)
Glycolysis , Neovascularization, Pathologic/enzymology , Phosphofructokinase-2/antagonists & inhibitors , Angiogenesis Inhibitors/pharmacology , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation/drug effects , Glycolysis/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/genetics , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Phosphofructokinase-2/metabolism , Pyridines/pharmacology , Retinal Vessels/drug effects , Retinal Vessels/growth & development , Retinal Vessels/pathology , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/metabolism , Zebrafish
14.
EMBO Mol Med ; 5(10): 1523-36, 2013 10.
Article in English | MEDLINE | ID: mdl-24092663

ABSTRACT

The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression.


Subject(s)
Fragile X Mental Retardation Protein/metabolism , RNA, Messenger/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Cell Adhesion , Cell Line, Tumor , Cell Movement , Cell Shape , Disease Progression , Epithelial-Mesenchymal Transition , Female , Fragile X Mental Retardation Protein/antagonists & inhibitors , Fragile X Mental Retardation Protein/genetics , Humans , Immunohistochemistry , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , RNA Interference , RNA, Small Interfering/metabolism , Vimentin/metabolism
15.
Cell ; 154(3): 651-63, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23911327

ABSTRACT

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Subject(s)
Endothelial Cells/metabolism , Glycolysis , Neovascularization, Physiologic , Phosphofructokinase-2/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Endothelial Cells/cytology , Female , Gene Deletion , Gene Silencing , Humans , Male , Mice , Mice, Inbred C57BL , Phosphofructokinase-2/genetics , Pseudopodia/metabolism , Zebrafish
16.
Trends Biochem Sci ; 38(1): 3-11, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23200187

ABSTRACT

Oxygen-sensing prolyl hydroxylase domain enzymes (PHDs) target hypoxia-inducible factor (HIF)-α subunits for proteasomal degradation in normoxia through hydroxylation. Recently, novel mechanisms of PHD activation and function have been unveiled. Interestingly, PHD3 can unexpectedly amplify HIF signaling through hydroxylation of the glycolytic enzyme pyruvate kinase (PK) muscle isoform 2 (PKM2). Recent studies have also yielded insight into HIF-independent PHD functions, including the control of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking in synaptic transmission and the activation of transient receptor potential cation channel member A1 (TRPA1) ion channels by oxygen levels in sensory nerves. Finally, PHD activation has been shown to involve the iron chaperoning function of poly(rC) binding protein (PCBP)1 and the (R)-enantiomer of 2-hydroxyglutarate (2-HG). The intersection of these regulatory pathways and interactions highlight the complexity of PHD regulation and function.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Procollagen-Proline Dioxygenase/metabolism , Signal Transduction , Animals , Humans
17.
J Hepatol ; 57(1): 61-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22420978

ABSTRACT

BACKGROUND & AIMS: The two major primary liver cancers in adults are hepatocellular carcinoma and cholangiocarcinoma. These tumors rapidly outgrow their vascular supply and become hypoxic, resulting in the production of hypoxia inducible factors. Recently, interest has grown in the regulators of these factors. Several reports have been published describing the role of prolyl hydroxylase domains--the key oxygen sensor responsible for the degradation of hypoxia inducible factors--tumor progression and vascularisation. The effect of prolyl hydroxylase domain 2 on the pathogenesis of liver cancer has never been studied. METHODS: A diethylnitrosamine-induced mouse model was used in this study, allowing primary hepatic tumors to occur as a result of chronic liver damage. Several parameters of prolyl hydroxylase domain 2-haplodeficient mice were compared to those of wild type mice, thereby focussing on the expression of angiogenic factors and on the hepatic progenitor cell activation and differentiation. RESULTS: This study shows that inhibiting prolyl hydroxylase domain 2 increases the hepatocarcinogenesis and stimulates the development of cholangiocarcinoma. Furthermore, PHD2 deficiency and the accompanying continuous HIF activation, selected for a more metastatic tumor phenotype. CONCLUSIONS: The effect of prolyl hydroxylase domain 2 deficiency on hepatocarcinogenesis hold a great potential for therapeutic intervention, since hypoxia and the selection for a more aggressive cholangiocarcinoma phenotype might also have a repercussion on patients receiving long-term treatment with anti-angiogenic compounds.


Subject(s)
Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Carcinoma, Hepatocellular/metabolism , Cholangiocarcinoma/metabolism , Liver Neoplasms, Experimental/metabolism , Procollagen-Proline Dioxygenase/genetics , Alkylating Agents/toxicity , Animals , Bile Duct Neoplasms/chemically induced , Bile Duct Neoplasms/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/chemically induced , Cholangiocarcinoma/genetics , Diethylnitrosamine/toxicity , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/physiology , Genotype , Hepatitis/genetics , Hepatitis/metabolism , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/genetics , Male , Mice , Neovascularization, Physiologic/physiology , Phenotype , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Procollagen-Proline Dioxygenase/deficiency , Procollagen-Proline Dioxygenase/metabolism , Signal Transduction/physiology , Stem Cells/physiology
18.
Nature ; 478(7369): 399-403, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-22012397

ABSTRACT

Angiogenesis is critical during tumour initiation and malignant progression. Different strategies aimed at blocking vascular endothelial growth factor (VEGF) and its receptors have been developed to inhibit angiogenesis in cancer patients. It has become increasingly clear that in addition to its effect on angiogenesis, other mechanisms including a direct effect of VEGF on tumour cells may account for the efficiency of VEGF-blockade therapies. Cancer stem cells (CSCs) have been described in various cancers including squamous tumours of the skin. Here we use a mouse model of skin tumours to investigate the impact of the vascular niche and VEGF signalling on controlling the stemness (the ability to self renew and differentiate) of squamous skin tumours during the early stages of tumour progression. We show that CSCs of skin papillomas are localized in a perivascular niche, in the immediate vicinity of endothelial cells. Furthermore, blocking VEGFR2 caused tumour regression not only by decreasing the microvascular density, but also by reducing CSC pool size and impairing CSC renewal properties. Conditional deletion of Vegfa in tumour epithelial cells caused tumours to regress, whereas VEGF overexpression by tumour epithelial cells accelerated tumour growth. In addition to its well-known effect on angiogenesis, VEGF affected skin tumour growth by promoting cancer stemness and symmetric CSC division, leading to CSC expansion. Moreover, deletion of neuropilin-1 (Nrp1), a VEGF co-receptor expressed in cutaneous CSCs, blocked VEGF's ability to promote cancer stemness and renewal. Our results identify a dual role for tumour-cell-derived VEGF in promoting cancer stemness: by stimulating angiogenesis in a paracrine manner, VEGF creates a perivascular niche for CSCs, and by directly affecting CSCs through Nrp1 in an autocrine loop, VEGF stimulates cancer stemness and renewal. Finally, deletion of Nrp1 in normal epidermis prevents skin tumour initiation. These results may have important implications for the prevention and treatment of skin cancers.


Subject(s)
Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/pathology , Neuropilin-1/metabolism , Signal Transduction , Skin Neoplasms/blood supply , Skin Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Epithelial Cells/cytology , Gene Deletion , Gene Expression Regulation, Neoplastic , Mice , Neoplastic Stem Cells , Neuropilin-1/genetics , Vascular Endothelial Growth Factor A/genetics
19.
Arch Pharm (Weinheim) ; 344(7): 431-41, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21618270

ABSTRACT

A new series of 16 6-chloro-1,1-dioxo-7-{4-[(4-R(1)-phenyl)imino]-4H-3,1-benzoxazin-2-yl}-3-(substituted amino)-1,4,2-benzodithiazines 7-22 was prepared in order to evaluate the cytotoxic activity against six human cancer cell lines. The structures of the new compounds were confirmed by IR, (1)H-, and (13)C-NMR, elemental analysis and in the cases of 11 and 31 by X-ray crystal structure analysis. This analysis showed that contrary to our earlier report the structures contain a benzoxazine ring instead of the proposed quinazolinone ring. The bioassay indicated that the benzodithiazine derivatives 7-22 possess cancer cell growth-inhibitory properties. Some compounds showed a high level of selectivity for certain cell lines. The most active compounds 11, 12, 16, 19, 21, and 22 exhibited potency higher or comparable to cisplatin. The compounds were particularly effective in LCLC-103H and MCF-7 cell lines with IC(50) values of 0.49-1.60 µM. Quantitative structure activity relationships (QSAR) revealed that a chloro substituent R(1) in the phenyl ring as well as the shape of the substituted amino group at R(2) (e.g., unsaturation is beneficial) are important for potency.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Thiazines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy/methods , Neoplasms/pathology , Quantitative Structure-Activity Relationship , Thiazines/chemical synthesis , Thiazines/chemistry
20.
Molecules ; 15(3): 1113-26, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20335967

ABSTRACT

The course of reaction of aryl and heteroaryl sulfonamides with diphenylcarbonate (DPC) and 4-dimethylaminopyridine (DMAP) was found to depend on the pKa of the sulfonamide used. Aryl sulfonamides with pKa approximately 10 gave 4-dimethylamino-pyridinium arylsulfonyl-carbamoylides, while the more acidic heteroaryl sulfonamides (pKa approximately 8) furnished 4-dimethylaminopyridinium heteroarylsulfonyl carbamates. Both the carbamoylides and carbamate salts reacted with aliphatic and aromatic amines with the formation of appropriate aryl(heteroaryl)sulfonyl ureas, and therefore, can be regarded as safe and stable substitutes of the hazardous and difficult to handle aryl(heteroaryl)sulfonyl isocyanates.


Subject(s)
Sulfonylurea Compounds/chemical synthesis , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrophotometry, Infrared , Sulfonylurea Compounds/chemistry , Sulfonylurea Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...