Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 18902, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919366

ABSTRACT

Throughout the COVID-19 pandemic, several variants of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have evolved, affecting the efficacy of the approved COVID-19 vaccines. To address the need for vaccines that induce strong and persistent cross-reactive neutralizing antibodies and T cell responses, we developed a prophylactic SARS-CoV-2 vaccine candidate based on our easily and rapidly adaptable plasmid DNA vaccine platform. The vaccine candidate, referred to here as VB2129, encodes a protein homodimer consisting of the receptor binding domain (RBD) from lineage B.1.351 (Beta) of SARS-CoV-2, a VoC with a severe immune profile, linked to a targeting unit (human LD78ß/CCL3L1) that binds chemokine receptors on antigen-presenting cells (APCs) and a dimerization unit (derived from the hinge and CH3 exons of human IgG3). Immunogenicity studies in mice demonstrated that the APC-targeted vaccine induced strong antibody responses to both homologous Beta RBD and heterologous RBDs derived from Wuhan, Alpha, Gamma, Delta, and Omicron BA.1 variants, as well as cross-neutralizing antibodies against these VoC. Overall, preclinical data justify the exploration of VB2129 as a potential booster vaccine that induces broader antibody- and T cell-based protection against current and future SARS-CoV-2 VoC.


Subject(s)
COVID-19 , Cancer Vaccines , Vaccines, DNA , Animals , Humans , Mice , COVID-19 Vaccines , SARS-CoV-2 , Pandemics , COVID-19/prevention & control , T-Lymphocytes , Antigen-Presenting Cells , Broadly Neutralizing Antibodies , DNA , Immunoglobulin G , Antibodies, Neutralizing , Antibodies, Viral
2.
Front Microbiol ; 13: 900922, 2022.
Article in English | MEDLINE | ID: mdl-35722346

ABSTRACT

The bacille Calmette-Guèrin (BCG) vaccine has been used for a century; nonetheless, tuberculosis (TB) remains one of the deadliest diseases in the world. Thus, new approaches to developing a new, more efficient vaccine are desirable. Mucosal vaccines are of particular interest, considering that Mycobacterium tuberculosis first enters the body through the mucosal membranes. We have previously demonstrated the immunogenicity of a recombinant Lactiplantibacillus plantarum delivery vector with TB hybrid antigen Ag85B-ESAT-6 anchored to the cell membrane. The goal of the present study was to analyze the impact of antigen localization in the immune response. Thus, we assessed two novel vaccine candidates, with the TB antigen either non-covalently anchored to the cell wall (LysMAgE6) or located intracellularly (CytAgE6). In addition, we compared two expression systems, using an inducible (LipoAgE6) or a constitutive promoter (cLipoAgE6) for expression of covalently anchored antigen to the cell membrane. Following administration to mice, antigen-specific CD4+ T-cell proliferation and IFN-γ and IL-17A secretion were analyzed for lung cell and splenocyte populations. Generally, the immune response in lung cells was stronger compared to splenocytes. The analyses showed that the type of expression system did not significantly affect the immunogenicity, while various antigen localizations resulted in markedly different responses. The immune response was considerably stronger for the surface-displaying candidate strains compared to the candidate with an intracellular antigen. These findings emphasize the significance of antigen exposure and further support the potential of L. plantarum as a mucosal vaccine delivery vehicle in the fight against TB.

3.
Sci Rep ; 10(1): 9640, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32541679

ABSTRACT

Members of the genus Lactobacillus have a long history in food applications and are considered as promising and safe hosts for delivery of medically interesting proteins. We have assessed multiple surface anchors derived from Lactobacillus plantarum for protein surface display in multiple Lactobacillus species, using a Mycobacterium tuberculosis hybrid antigen as test protein. The anchors tested were a lipoprotein anchor and two cell wall anchors, one non-covalent (LysM domain) and one covalent (sortase-based anchoring using the LPXTG motif). Thus, three different expression vectors for surface-anchoring were tested in eight Lactobacillus species. When using the LPXTG and LysM cell wall anchors, surface display, as assessed by flow cytometry and fluorescence microscopy, was observed in all species except Lactobacillus acidophilus. Use of the cell membrane anchor revealed more variation in the apparent degree of surface-exposure among the various lactobacilli. Overproduction of the secreted and anchored antigen impaired bacterial growth rate to extents that varied among the lactobacilli and were dependent on the type of anchor. Overall, these results show that surface anchors derived from L. plantarum are promising candidates for efficient anchoring of medically interesting proteins in other food grade Lactobacillus species.


Subject(s)
Bacterial Proteins/metabolism , Lactobacillus plantarum/metabolism , Lactobacillus/metabolism , Blotting, Western , Cell Surface Display Techniques , Cell Wall/metabolism , Flow Cytometry , Lipoproteins/metabolism , Microscopy, Fluorescence
4.
Vaccine ; 37(43): 6371-6379, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31526620

ABSTRACT

Lactobacillus spp. comprise a large group of Gram-positive lactic acid bacteria with varying physiological, ecological and immunomodulatory properties that are widely exploited by mankind, primarily in food production and as health-promoting probiotics. Recent years have shown increased interest in using lactobacilli for delivery of vaccines, mainly due to their ability to skew the immune system towards pro-inflammatory responses. We have compared the potential of eight Lactobacillus species, L. plantarum, L. brevis, L. curvatus, L. rhamnosus, L. sakei, L. gasseri, L. acidophilus and L. reuteri, as immunogenic carriers of the Ag85B-ESAT-6 antigen from Mycobacterium tuberculosis. Surface-display of the antigen was achieved in L. plantarum, L. brevis, L. gasseri and L. reuteri and these strains were further analyzed in terms of their in vitro and in vivo immunogenicity. All strains activated human dendritic cells in vitro. Immunization of mice using a homologous prime-boost regimen comprising a primary subcutaneous immunization followed by three intranasal boosters, led to slightly elevated IgG levels in serum in most strains, and, importantly, to significantly increased levels of antigen-specific mucosal IgA. Cellular immunity was assessed by studying antigen-specific T cell responses in splenocytes, which did not reveal proliferation as assessed by the expression of Ki67, but which showed clear antigen-specific IFN-γ and IL-17 responses for some of the groups. Taken together, the present results indicate that L. plantarum and L. brevis are the most promising carriers of TB vaccines.


Subject(s)
Antigens, Bacterial/immunology , Cell Surface Display Techniques/methods , Immunity, Cellular , Lactobacillus/classification , Mycobacterium tuberculosis/immunology , Administration, Intranasal , Animals , Antigens, Bacterial/genetics , Antigens, Surface/genetics , Antigens, Surface/immunology , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/microbiology , Female , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/genetics , Probiotics , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/immunology
5.
Front Immunol ; 10: 1588, 2019.
Article in English | MEDLINE | ID: mdl-31354727

ABSTRACT

Vaccination is considered the most effective strategy for controlling tuberculosis (TB). The existing vaccine, the Bacille Calmette-Guérin (BCG), although partially protective, has a number of limitations. Therefore, there is a need for developing new TB vaccines and several strategies are currently exploited including the use of viral and bacterial delivery vectors. We have previously shown that Lactobacillus plantarum (Lp) producing Ag85B and ESAT-6 antigens fused to a dendritic cell-targeting peptide (referred to as Lp_DC) induced specific immune responses in mice. Here, we analyzed the ability of two Lp-based vaccines, Lp_DC and Lp_HBD (in which the DC-binding peptide was replaced by an HBD-domain directing the antigen to non-phagocytic cells) to activate antigen-presenting cells, induce specific immunity and protect mice from Mycobacterium tuberculosis infection. We tested two strategies: (i) Lp as BCG boosting vaccine (a heterologous regimen comprising parenteral BCG immunization followed by intranasal Lp boost), and (ii) Lp as primary vaccine (a homologous regimen including subcutaneous priming followed by intranasal boost). The results showed that both Lp constructs applied as a BCG boost induced specific cellular immunity, manifested in T cell proliferation, antigen-specific IFN-γ responses and multifunctional T cells phenotypes. More importantly, intranasal boost with Lp_DC or Lp_HBD enhanced protection offered by BCG, as shown by reduced M. tuberculosis counts in lungs. These findings suggest that Lp constructs could be developed as a potential mucosal vaccine platform against mycobacterial infections.


Subject(s)
Lactobacillus plantarum/immunology , Mycobacterium tuberculosis/immunology , Recombinant Fusion Proteins/immunology , Tuberculosis/immunology , Animals , Antigens, Bacterial/immunology , BCG Vaccine/immunology , Bacterial Proteins/immunology , Cells, Cultured , Female , Humans , Immunity, Cellular/immunology , Immunization, Secondary/methods , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes/immunology , Tuberculosis Vaccines/immunology , Vaccination/methods
6.
PLoS One ; 12(5): e0176401, 2017.
Article in English | MEDLINE | ID: mdl-28467432

ABSTRACT

Mucosal immunity is important for the protection against a wide variety of pathogens. Traditional vaccines administered via parenteral routes induce strong systemic immunity, but they often fail to generate mucosal IgA. In contrast, bacteria-based vaccines comprise an appealing strategy for antigen delivery to mucosal sites. Vaginal infection with Chlamydia trachomatis can develop into upper genital tract infections that can lead to infertility. Therefore, the development of an effective vaccine against Chlamydia is a high priority. In the present study, we have explored the use of a common lactic acid bacterium, Lactobacillus plantarum, as a vector for delivery of a C. trachomatis antigen to mucosal sites. The antigen, referred as Hirep2 (H2), was anchored to the surface of L. plantarum cells using an N-terminal lipoprotein anchor. After characterization, the constructed strain was used as an immunogenic agent in mice. We explored a heterologous prime-boost strategy, consisting of subcutaneous priming with soluble H2 antigen co-administered with CAF01 adjuvant, followed by an intranasal boost with H2-displaying L. plantarum. The results show that, when used as a booster, the recombinant L. plantarum strain was able to evoke cellular responses. Most importantly, booster immunization with the Lactobacillus-based vaccine induced generation of antigen-specific IgA in the vaginal cavity.


Subject(s)
Chlamydia trachomatis/immunology , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Lactobacillus plantarum/immunology , Animals , Female , Mice
7.
Appl Environ Microbiol ; 83(2)2017 01 15.
Article in English | MEDLINE | ID: mdl-27815271

ABSTRACT

Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. IMPORTANCE: This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this antigen to the bacterial cell wall or to the cell membrane. The recombinant strains elicited proliferative antigen-specific T-cell responses in white blood cells from tuberculosis-positive humans and induced specific immune responses after nasal and oral administrations in mice.


Subject(s)
Antigens, Bacterial/immunology , Lactobacillus plantarum/immunology , Tuberculosis Vaccines/immunology , Animals , Female , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Mice , Mice, Inbred C57BL
8.
Microb Cell Fact ; 15(1): 169, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27716231

ABSTRACT

BACKGROUND: Lactobacillus plantarum is considered as a potential cell factory because of its GRAS (generally recognized as safe) status and long history of use in food applications. Its possible applications include in situ delivery of proteins to a host, based on its ability to persist at mucosal surfaces of the human intestine, and the production of food-related enzymes. By displaying different enzymes on the surface of L. plantarum cells these could be used as whole-cell biocatalysts for the production of oligosaccharides. In this present study, we aimed to express and display a mannanase and a chitosanase on the cell surface of L. plantarum. RESULTS: ManB, a mannanase from Bacillus licheniformis DSM13, and CsnA, a chitosanase from Bacillus subtilis ATCC 23857 were fused to different anchoring motifs of L. plantarum for covalent attachment to the cell surface, either via an N-terminal lipoprotein anchor (Lp_1261) or a C-terminal cell wall anchor (Lp_2578), and the resulting fusion proteins were expressed in L. plantarum WCFS1. The localization of the recombinant proteins on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest mannanase and chitosanase activities obtained for displaying L. plantarum cells were 890 U and 1360 U g dry cell weight, respectively. In reactions with chitosan and galactomannans, L. plantarum CsnA- and ManB-displaying cells produced chito- and manno-oligosaccharides, respectively, as analyzed by high performance anion exchange chromatography (HPAEC) and mass spectrometry (MS). Surface-displayed ManB is able to break down galactomannan (LBG) into smaller manno-oligosaccharides, which can support growth of L. plantarum. CONCLUSION: This study shows that mannanolytic and chitinolytic enzymes can be anchored to the cell surface of L. plantarum in active forms. L. plantarum chitosanase- and mannanase-displaying cells should be of interest for the production of potentially 'prebiotic' oligosaccharides. This approach, with the enzyme of interest being displayed on the cell surface of a food-grade organism, may also be applied in production processes relevant for food industry.


Subject(s)
Cell Surface Display Techniques , Glycoside Hydrolases/metabolism , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/genetics , beta-Mannosidase/metabolism , Biocatalysis , Cloning, Molecular , Food Industry/methods , Galactose/analogs & derivatives , Glycoside Hydrolases/genetics , Humans , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Lipoproteins/metabolism , Mannans/metabolism , Oligosaccharides/metabolism , Prebiotics , Recombinant Proteins/metabolism , beta-Mannosidase/genetics
10.
Microb Cell Fact ; 14: 169, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26494531

ABSTRACT

BACKGROUND: Chemokines are attractive candidates for vaccine adjuvants due to their ability to recruit the immune cells. Lactic acid bacteria (LAB)-based delivery vehicles have potential to be used as a cheap and safe option for vaccination. Chemokine produced on the surface of LAB may potentially enhance the immune response to an antigen and this approach can be considered in development of future mucosal vaccines. RESULTS: We have constructed strains of Lactobacillus plantarum displaying a chemokine on their surface. L. plantarum was genetically engineered to express and anchor to the surface a protein called CCL3Gag. CCL3Gag is a fusion protein comprising of truncated HIV-1 Gag antigen and the murine chemokine CCL3, also known as MIP-1α. Various surface anchoring strategies were explored: (1) a lipobox-based covalent membrane anchor, (2) sortase-mediated covalent cell wall anchoring, (3) LysM-based non-covalent cell wall anchoring, and (4) an N-terminal signal peptide-based transmembrane anchor. Protein production and correct localization were confirmed using Western blotting, flow cytometry and immunofluorescence microscopy. Using a chemotaxis assay, we demonstrated that CCL3Gag-producing L. plantarum strains are able to recruit immune cells in vitro. CONCLUSIONS: The results show the ability of engineered L. plantarum to produce a functional chemotactic protein immobilized on the bacterial surface. We observed that the activity of surface-displayed CCL3Gag differed depending on the type of anchor used. The chemokine which is a part of the bacteria-based vaccine may increase the recruitment of immune cells and, thereby, enhance the reaction of the immune system to the vaccine.


Subject(s)
Chemokine CCL3/metabolism , HIV-1/metabolism , Lactobacillus plantarum/metabolism , gag Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , Chemokine CCL3/genetics , Chemotaxis , Flow Cytometry , Humans , Lactobacillus plantarum/growth & development , Microscopy, Fluorescence , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Vaccines, Synthetic/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics
11.
Microb Cell Fact ; 14: 95, 2015 Jul 04.
Article in English | MEDLINE | ID: mdl-26141059

ABSTRACT

BACKGROUND: Lactic acid bacteria (LAB) are promising vehicles for delivery of a variety of medicinal compounds, including antigens and cytokines. It has also been established that LAB are able to deliver cDNA to host cells. To increase the efficiency of LAB-driven DNA delivery we have constructed Lactobacillus plantarum strains targeting DEC-205, which is a receptor located at the surface of dendritic cells (DCs). The purpose was to increase uptake of bacterial cells, which could lead to improved cDNA delivery to immune cells. RESULTS: Anti-DEC-205 antibody (aDec) was displayed at the surface of L. plantarum using three different anchoring strategies: (1) covalent anchoring of aDec to the cell membrane (Lipobox domain, Lip); (2) covalent anchoring to the cell wall (LPXTG domain, CWA); (3) non-covalent anchoring to the cell wall (LysM domain, LysM). aDec was successfully expressed in all three strains, but surface location of the antibody could only be demonstrated for the two strains with cell wall anchors (CWA and LysM). Co-incubation of the engineered strains and DCs showed increased uptake when anchoring aDec using the CWA or LysM anchors. In a competition assay, free anti-DEC abolished the increased uptake, showing that the internalization is due to specific interactions between the DEC-205 receptor and aDec. To test plasmid transfer, a plasmid for expression of GFP under control of an eukaryotic promoter was transformed into the aDec expressing strains and GFP expression in DCs was indeed increased when using the strains producing cell-wall anchored aDec. Plasmid transfer to DCs in the gastro intestinal tract was also detected using a mouse model. Surprisingly, in mice the highest expression of GFP was observed for the strain in which aDec was coupled to the cell membrane. CONCLUSION: The results show that surface expression of aDec leads to increased internalization of L. plantarum and plasmid transfer in DCs and that efficiency depends on the type of anchor used. Interestingly, in vitro data indicates that cell wall anchoring is more effective, whereas in vivo data seem to indicate that anchoring to the cell membrane is preferable. It is likely that the more embedded localization of aDec in the latter case is favorable when cells are exposed to the harsh conditions of the gastro-intestinal tract.


Subject(s)
Dendritic Cells/metabolism , Gene Transfer Techniques , Immunoglobulin Variable Region/genetics , Lactobacillus plantarum/genetics , Plasmids/genetics , Single-Chain Antibodies/genetics , Animals , Biological Transport , Cells, Cultured , Female , Gene Expression , Humans , Immunoglobulin Variable Region/metabolism , Lactobacillus plantarum/metabolism , Mice , Mice, Inbred BALB C , Plasmids/metabolism , Single-Chain Antibodies/immunology
12.
Mol Immunol ; 66(2): 107-16, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25771177

ABSTRACT

Dietary inclusions of a bacterial meal consisting mainly of the non-commensal, methanotrophic bacteria Methylococcus capsulatus Bath have been shown to ameliorate symptoms of intestinal inflammation in different animal models. In order to investigate the molecular mechanisms causing these effects, we have studied the influence of this strain on different immune cells central for the regulation of inflammatory responses. Effects were compared to those induced by the closely related strain M. capsulatus Texas and the well-described probiotic strain Escherichia coli Nissle 1917. M. capsulatus Bath induced macrophage polarization toward a pro-inflammatory phenotype, but not to the extent observed after exposure to E. coli Nissle 1917. Likewise, dose-dependent abilities to activate NF-κB transcription in U937 cells were observed, with E. coli Nissle 1917 being most potent. High levels of CD141 on human primary monocyte-derived dendritic cells (moDCs) were only detected after exposure to E. coli Nissle 1917, which collectively indicate a superior capacity to induce Th1 cell responses for this strain. On the other hand, the M. capsulatus strains were more potent in increasing the expression of the maturation markers CD80, CD83 and CD86 than E. coli Nissle 1917. M. capsulatus Bath induced the highest levels of IL-6, IL-10 and IL-12 secretion from dendritic cells, suggesting that this strain generally the post potent inducer of cytokine secretion. These results show that M. capsulatus Bath exhibit immunogenic properties in mammalian in vitro systems which diverge from that of E. coli Nissle 1917. This may provide clues to how M. capsulatus Bath influence the adaptive immune system in vivo. However, further in vivo experiments are required for a complete understanding of how this strain ameliorates intestinal inflammation in animal models.


Subject(s)
Dendritic Cells/drug effects , Escherichia coli/immunology , Macrophages/drug effects , Methylococcus capsulatus/immunology , Monocytes/drug effects , Probiotics/pharmacology , Adaptive Immunity/drug effects , Antigens, CD/genetics , Antigens, CD/immunology , Cell Differentiation , Cell Line, Tumor , Dendritic Cells/cytology , Dendritic Cells/immunology , Gene Expression Regulation , Humans , Immunophenotyping , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Macrophages/cytology , Macrophages/immunology , Monocytes/cytology , Monocytes/immunology , Primary Cell Culture , Signal Transduction , Species Specificity
13.
Probiotics Antimicrob Proteins ; 6(1): 1-10, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24676762

ABSTRACT

Macrophages are important with respect to both innate and adaptive immune responses and are known to differentiate into pro-inflammatory M1- or anti-inflammatory M2-phenotypes following activation. In order to study how different bacteria affect macrophage polarization, we exposed murine RAW 264.7 macrophages to sixteen different strains representing probiotic strains, pathogens, commensals and strains of food origin. Increased inducible nitric oxide synthase (iNOS) or arginase-1 gene expression indicates M1 or M2 polarization, respectively, and was quantified by qRT-PCR. Strains of Escherichia and Salmonella elevated iNOS expression more so than strains of Enterococcus, Lactobacillus and Lactococcus, indicating that Gram-negative strains are more potent M1 inducers. However, strain-specific responses were observed. For instance, Escherichia coli Nissle 1917 was a poor inducer of iNOS gene expression compared to the other E. coli strains, while Enterococcus faecalis Symbioflor-1 was more potent in this respect compared to all the eleven Gram-positive strains tested. Macrophage polarization was further characterized by quantifying secreted pro- and anti-inflammatory cytokines. Exposure to the pathogen E. coli 042 produced a cytokine profile indicating M1 differentiation, which is in accordance with the PCR data. However, exposure to most strains resulted in either high or low secretion levels of all cytokines tested, rather than a clear M1 or M2 profile. In general, the Gram-negative strains induced high levels of cytokine secretion compared to the Gram-positive strains. Interestingly, strains of human origin had a higher impact on macrophages compared to strains of food origin.


Subject(s)
Macrophages/microbiology , Probiotics , Animals , Arginase/genetics , Arginase/metabolism , Cell Proliferation , Cell Survival , Enterococcus/physiology , Escherichia coli/classification , Escherichia coli/physiology , Food Contamination , Food Microbiology , Gastrointestinal Microbiome , Gene Expression Regulation , Humans , Interleukin-10/metabolism , Interleukin-2/metabolism , Intestines/microbiology , Lactobacillus/physiology , Lactococcus/physiology , Mice , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Salmonella enterica/physiology , Tumor Necrosis Factor-alpha/metabolism
14.
J Bacteriol ; 194(23): 6626, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23144383

ABSTRACT

Methanotrophic bacteria perform major roles in global carbon cycles via their unique enzymatic activities that enable the oxidation of one-carbon compounds, most notably methane. Here we describe the annotated draft genome sequence of the aerobic methanotroph Methylococcus capsulatus (Texas), a type strain originally isolated from sewer sludge.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Methylococcus capsulatus/genetics , Sequence Analysis, DNA , Methane/metabolism , Methylococcus capsulatus/isolation & purification , Methylococcus capsulatus/metabolism , Molecular Sequence Data , Oxidation-Reduction , Sewage/microbiology
15.
FEMS Microbiol Lett ; 324(1): 56-63, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22092764

ABSTRACT

Plasmid pAMI7 of the methylotrophic bacterium Paracoccus aminophilus JCM 7686 (Alphaproteobacteria) encodes a functional type II restriction-modification (R-M) system designated PamI. Homologous systems were identified in the genomes of distinct taxonomic groups of Bacteria and Archaea, which provides evidence that horizontal gene transfer has contributed to the wide dissemination of R-M modules - even between domains. Analysis of the cleavage specificity of the R.PamI endonuclease revealed that this protein is an isoschizomer of restriction enzyme NcoI. Interestingly, bioinformatic analyses suggest that R.PamI and NcoI are accompanied by methyltransferases of different methylation specificities (C5-methylcytosine and N4-methylcytosine methyltransferases, respectively), which possibly exemplifies recombinational shuffling of genes coding for individual components of R-M systems. The PamI system can stabilize plasmid pAMI7 in a bacterial population, most probably at the postsegregational level. Therefore, it functions in an analogous manner to plasmid-encoded toxin-antitoxin (TA) systems. Since the TA system of pAMI7 is nonfunctional, it is highly probable that this lack is compensated by the stabilizing activity of PamI. This indicates the crucial role of the analyzed R-M system in the stable maintenance of pAMI7, which is, to our knowledge, the first report of 'symbiosis' between a R-M system and a plasmid in the Alphaproteobacteria.


Subject(s)
DNA Restriction-Modification Enzymes/genetics , DNA Restriction-Modification Enzymes/metabolism , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Paracoccus/enzymology , Paracoccus/genetics , Plasmids , Amino Acid Sequence , DNA/metabolism , Gene Transfer, Horizontal , Molecular Sequence Data , Sequence Homology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...