Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 97(1): 283-292, 2024.
Article in English | MEDLINE | ID: mdl-38108352

ABSTRACT

BACKGROUND: There is evidence that aerobic exercise is beneficial for brain health, but these effects are variable between individuals and the underlying mechanisms that modulate these benefits remain unclear. OBJECTIVE: We sought to characterize the acute physiological response of bioenergetic and neurotrophic blood biomarkers to exercise in cognitively healthy older adults, as well as relationships with brain blood flow. METHODS: We measured exercise-induced changes in lactate, which has been linked to brain blood flow, as well brain-derived neurotrophic factor (BDNF), a neurotrophin related to brain health. We further quantified changes in brain blood flow using arterial spin labeling. RESULTS: As expected, lactate and BDNF both changed with time post exercise. Intriguingly, there was a negative relationship between lactate response (area under the curve) and brain blood flow measured acutely following exercise. Finally, the BDNF response tracked strongly with change in platelet activation, providing evidence that platelet activation is an important mechanism for trophic-related exercise responses. CONCLUSIONS: Lactate and BDNF respond acutely to exercise, and the lactate response tracks with changes in brain blood flow. Further investigation into how these factors relate to brain health-related outcomes in exercise trials is warranted.


Subject(s)
Brain-Derived Neurotrophic Factor , Exercise , Humans , Aged , Exercise/physiology , Lactic Acid , Cerebrovascular Circulation , Biomarkers
2.
Curr Alzheimer Res ; 20(8): 557-566, 2023.
Article in English | MEDLINE | ID: mdl-38047367

ABSTRACT

BACKGROUND: The development of biomarkers that are easy to collect, process, and store is a major goal of research on current Alzheimer's Disease (AD) and underlies the growing interest in plasma biomarkers. Biomarkers with these qualities will improve diagnosis and allow for better monitoring of therapeutic interventions. However, blood collection strategies have historically differed between studies. We examined the ability of various ultrasensitive plasma biomarkers to predict cerebral amyloid status in cognitively unimpaired individuals when collected using acid citrate dextrose (ACD). We then examined the ability of these biomarkers to predict cognitive impairment independent of amyloid status. METHODS: Using a cross-sectional study design, we measured amyloid beta 42/40 ratio, pTau-181, neurofilament-light, and glial fibrillary acidic protein using the Quanterix Simoa® HD-X platform. To evaluate the discriminative accuracy of these biomarkers in determining cerebral amyloid status, we used both banked plasma and 18F-AV45 PET cerebral amyloid neuroimaging data from 140 cognitively unimpaired participants. We further examined their ability to discriminate cognitive status by leveraging data from 42 cognitively impaired older adults. This study is the first, as per our knowledge, to examine these specific tests using plasma collected using acid citrate dextrose (ACD), as well as the relationship with amyloid PET status. RESULTS: Plasma AB42/40 had the highest AUC (0.833, 95% C.I. 0.767-0.899) at a cut-point of 0.0706 for discriminating between the two cerebral amyloid groups (sensitivity 76%, specificity 78.5%). Plasma NFL at a cut-point of 20.58pg/mL had the highest AUC (0.908, 95% CI 0.851- 0.966) for discriminating cognitive impairment (sensitivity 84.8%, specificity 89.9%). The addition of age and apolipoprotein e4 status did not improve the discriminative accuracy of these biomarkers. CONCLUSION: Our results suggest that the Aß42/40 ratio is useful in discriminating clinician-rated elevated cerebral amyloid status and that NFL is useful for discriminating cognitive impairment status. These findings reinforce the growing body of evidence regarding the general utility of these biomarkers and extend their utility to plasma collected in a non-traditional anticoagulant.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Amyloid beta-Peptides/metabolism , Anticoagulants , Cross-Sectional Studies , Alzheimer Disease/psychology , Amyloid , Cognitive Dysfunction/psychology , Cognition , Biomarkers , tau Proteins
3.
Front Hum Neurosci ; 17: 1115355, 2023.
Article in English | MEDLINE | ID: mdl-36742355

ABSTRACT

Introduction: Beetroot juice (BRJ) improves peripheral endothelial function and vascular compliance, likely due to increased nitric oxide bioavailability. It is unknown if BRJ alters cerebrovascular function and cardiovagal baroreflex control in healthy individuals. Purpose: We tested the hypotheses that BRJ consumption improves cerebral autoregulation (CA) and cardiovagal baroreflex sensitivity (cBRS) during lower-body negative pressure (LBNP). Methods: Thirteen healthy adults (age: 26 ± 4 years; 5 women) performed oscillatory (O-LBNP) and static LBNP (S-LBNP) before (PRE) and 3 h after consuming 500 mL of BRJ (POST). Participants inhaled 3% CO2 (21% O2, 76% N2) during a 5 min baseline and throughout LBNP to attenuate reductions in end-tidal CO2 tension (PETCO2). O-LBNP was conducted at ∼0.02 Hz for six cycles (-70 mmHg), followed by a 3-min recovery before S-LBNP (-40 mmHg) for 7 min. Beat-to-beat middle cerebral artery blood velocity (MCAv) (transcranial Doppler) and blood pressure were continuously recorded. CA was assessed using transfer function analysis to calculate coherence, gain, and phase in the very-low-frequency (VLF; 0.020-0.070 Hz) and low-frequency bands (LF; 0.07-0.20 Hz). cBRS was calculated using the sequence method. Comparisons between POST vs. PRE are reported as mean ± SD. Results: During O-LBNP, coherence VLF was greater at POST (0.55 ± 0.06 vs. 0.46 ± 0.08; P < 0.01), but phase VLF (P = 0.17) and gain VLF (P = 0.69) were not different. Coherence LF and phase LF were not different, but gain LF was lower at POST (1.03 ± 0.20 vs. 1.12 ± 0.30 cm/s/mmHg; P = 0.05). During S-LBNP, CA was not different in the VLF or LF bands (all P > 0.10). Up-cBRS and Down-cBRS were not different during both LBNP protocols. Conclusion: These preliminary data indicate that CA and cBRS during LBNP in healthy, young adults is largely unaffected by an acute bolus of BRJ.

4.
J Alzheimers Dis ; 92(3): 1027-1035, 2023.
Article in English | MEDLINE | ID: mdl-36847010

ABSTRACT

BACKGROUND: Individuals with mild cognitive impairment (MCI) have reduced lipid-stimulated mitochondrial respiration in skeletal muscle. A major risk factor for Alzheimer's disease (AD), the apolipoprotein E4 (APOE4) allele, is implicated in lipid metabolism and is associated with metabolic and oxidative stress that can result from dysfunctional mitochondria. Heat shock protein 72 (Hsp72) is protective against these stressors and is elevated in the AD brain. OBJECTIVE: Our goal was to characterize skeletal muscle ApoE and Hsp72 protein expression in APOE4 carriers in relationship to cognitive status, muscle mitochondrial respiration and AD biomarkers. METHODS: We analyzed previously collected skeletal muscle tissue from 24 APOE4 carriers (60y+) who were cognitively healthy (CH, n = 9) or MCI (n = 15). We measured ApoE and Hsp72 protein levels in muscle and phosphorylated tau181 (pTau181) levels in plasma, and leveraged previously collected data on APOE genotype, mitochondrial respiration during lipid oxidation, and VO2 max. RESULTS: Muscle ApoE (p = 0.013) and plasma pTau181 levels (p < 0.001) were higher in MCI APOE4 carriers. Muscle ApoE positively correlated with plasma pTau181 in all APOE4 carriers (R2 = 0.338, p = 0.003). Hsp72 expression negatively correlated with ADP (R2 = 0.775, p = <0.001) and succinate-stimulated respiration (R2 = 0.405, p = 0.003) in skeletal muscle of MCI APOE4 carriers. Plasma pTau181 negatively tracked with VO2 max in all APOE4 carriers (R2 = 0.389, p = 0.003). Analyses were controlled for age. CONCLUSION: This work supports a relationship between cellular stress in skeletal muscle and cognitive status in APOE4 carriers.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Apolipoprotein E4/genetics , HSP72 Heat-Shock Proteins , Apolipoproteins E/genetics , Alzheimer Disease/genetics , Cognitive Dysfunction/genetics , Muscles , Biomarkers , Apolipoprotein E3/genetics
5.
Article in English | MEDLINE | ID: mdl-38196559

ABSTRACT

Obesity is increasing in prevalence across all age groups. Long-term obesity can lead to the development of metabolic and cardiovascular diseases through its effects on adipose, skeletal muscle, and liver tissue. Pathological mechanisms associated with obesity include immune response and inflammation as well as oxidative stress and consequent endothelial and mitochondrial dysfunction. Recent evidence links obesity to diminished brain health and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Both AD and PD are associated with insulin resistance, an underlying syndrome of obesity. Despite these links, causative mechanism(s) resulting in neurodegenerative disease remain unclear. This review discusses relationships between obesity, AD, and PD, including clinical and preclinical findings. The review then briefly explores nonpharmacological directions for intervention.

6.
PLoS One ; 17(7): e0265860, 2022.
Article in English | MEDLINE | ID: mdl-35802628

ABSTRACT

BACKGROUND: Physical exercise may support brain health and cognition over the course of typical aging. The goal of this nonrandomized clinical trial was to examine the effect of an acute bout of aerobic exercise on brain blood flow and blood neurotrophic factors associated with exercise response and brain function in older adults with and without possession of the Apolipoprotein epsilon 4 (APOE4) allele, a genetic risk factor for developing Alzheimer's. We hypothesized that older adult APOE4 carriers would have lower cerebral blood flow regulation and would demonstrate blunted neurotrophic response to exercise compared to noncarriers. METHODS: Sixty-two older adults (73±5 years old, 41 female [67%]) consented to this prospectively enrolling clinical trial, utilizing a single arm, single visit, experimental design, with post-hoc assessment of difference in outcomes based on APOE4 carriership. All participants completed a single 15-minute bout of moderate-intensity aerobic exercise. The primary outcome measure was change in cortical gray matter cerebral blood flow in cortical gray matter measured by magnetic resonance imaging (MRI) arterial spin labeling (ASL), defined as the total perfusion (area under the curve, AUC) following exercise. Secondary outcomes were changes in blood neurotrophin concentrations of insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and brain derived neurotrophic factor (BDNF). RESULTS: Genotyping failed in one individual (n = 23 APOE4 carriers and n = 38 APOE4 non-carriers) and two participants could not complete primary outcome testing. Cerebral blood flow AUC increased immediately following exercise, regardless of APOE4 carrier status. In an exploratory regional analyses, we found that cerebral blood flow increased in hippocampal brain regions, while showing no change in cerebellum across both groups. Among high inter-individual variability, there were no significant changes in any of the 3 neurotrophic factors for either group immediately following exercise. CONCLUSIONS: Our findings show that both APOE4 carriers and non-carriers show similar effects of exercise-induced increases in cerebral blood flow and neurotrophic response to acute aerobic exercise. Our results provide further evidence that acute exercise-induced increases in cerebral blood flow may be regional specific, and that exercise-induced neurotrophin release may show a differential effect in the aging cardiovascular system. Results from this study provide an initial characterization of the acute brain blood flow and neurotrophin responses to a bout of exercise in older adults with and without this known risk allele for cardiovascular disease and Alzheimer's disease. TRIAL REGISTRATION: Dementia Risk and Dynamic Response to Exercise (DYNAMIC); Identifier: NCT04009629.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Exercise , Aged , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Apolipoprotein E4/genetics , Brain/diagnostic imaging , Brain/metabolism , Exercise/physiology , Female , Humans , Male
7.
Alzheimers Dement (N Y) ; 8(1): e12239, 2022.
Article in English | MEDLINE | ID: mdl-35128029

ABSTRACT

INTRODUCTION: Fasting glucose increases with age and is linked to modifiable Alzheimer's disease risk factors such as cardiovascular disease and Type 2 diabetes (T2D). METHODS: We leveraged available biospecimens and neuroimaging measures collected during the Alzheimer's Prevention Through Exercise (APEx) trial (n = 105) to examine the longitudinal relationship between change in blood glucose metabolism and change in regional cerebral amyloid deposition and gray and white matter (WM) neurodegeneration in older adults over 1 year of follow-up. RESULTS: Individuals with improving fasting glucose (n = 61) exhibited less atrophy and regional amyloid accumulation compared to those whose fasting glucose worsened over 1 year (n = 44). Specifically, while individuals with increasing fasting glucose did not yet show cognitive decline, they did have regional atrophy in the hippocampus and inferior parietal cortex, and increased amyloid accumulation in the precuneus cortex. Signs of early dementia pathology occurred in the absence of significant group differences in insulin or body composition, and was not modified by apolipoprotein E ε4 carrier status. DISCUSSION: Dysregulation of glucose in late life may signal preclinical brain change prior to clinically relevant cognitive decline. Additional work is needed to determine whether treatments specifically targeting fasting glucose levels may impact change in brain structure or cerebral amyloid in older adults.

8.
Front Hum Neurosci ; 16: 1063273, 2022.
Article in English | MEDLINE | ID: mdl-36618993

ABSTRACT

Chronic consumption of sugar- and artificially-sweetened beverages (SSB and ASB) are associated with an increased risk of stroke but it is unclear how acute consumption influences cerebral vascular function. Purpose: We hypothesized that: (1) acute consumption of SSB and ASB would augment dynamic cerebral autoregulation (dCA) and attenuate cerebral vascular reactivity to hypercapnia (CVRCO2) compared to water; and (2) dCA and CVRCO2 would be attenuated with SSB compared to ASB and water. Methods: Twelve healthy adults (age: 23 ± 2 years, four females) completed three randomized trials where they drank 500 ml of water, SSB (Mountain Dew®), or ASB (Diet Mountain Dew®). We measured mean arterial pressure (MAP), middle and posterior cerebral artery blood velocities (MCAv and PCAv), and end-tidal CO2 tension (PETCO2). Cerebral vascular conductance was calculated as cerebral artery blood velocity/MAP (MCAc and PCAc). Twenty min after consumption, participants completed a 5 min baseline, and in a counterbalanced order, a CVRCO2 test (3%, 5%, and 7% CO2 in 3 min stages) and a dCA test (squat-stand tests at 0.10 Hz and 0.05 Hz for 5 min each) separated by 10 min. CVRCO2 was calculated as the slope of the linear regression lines of MCAv and PCAv vs. PETCO2. dCA was assessed in the MCA using transfer function analysis. Coherence, gain, and phase were determined in the low frequency (LF; 0.07-0.2 Hz) and very low frequency (VLF; 0.02-0.07 Hz). Results: MCAv and MCAc were lower after SSB (54.11 ± 12.28 cm/s, 0.58 ± 0.15 cm/s/mmHg) and ASB (51.07 ± 9.35 cm/s, 0.52 ± 1.0 cm/s/mmHg) vs. water (62.73 ± 12.96 cm/s, 0.67 ± 0.11 cm/s/mmHg; all P < 0.035), respectively. PCAc was also lower with the ASB compared to water (P = 0.007). MCA CVRCO2 was lower following ASB (1.55 ± 0.38 cm/s/mmHg) vs. water (2.00 ± 0.57 cm/s/mmHg; P = 0.011) but not after SSB (1.90 ± 0.67 cm/s/mmHg; P = 0.593). PCA CVRCO2 did not differ between beverages (P > 0.853). There were no differences between beverages for coherence (P ≥ 0.295), gain (P ≥ 0.058), or phase (P ≥ 0.084) for either frequency. Discussion: Acute consumption of caffeinated SSB and ASB resulted in lower intracranial artery blood velocity and conductance but had a minimal effect on cerebral vascular function as only MCA CVRCO2 was altered with the ASB compared to water.

9.
Temperature (Austin) ; 8(4): 381-401, 2021.
Article in English | MEDLINE | ID: mdl-34901320

ABSTRACT

Recurring hot head-out water immersion (HOWI) enhances peripheral vascular function and cerebral blood velocity during non-immersion conditions. However, it is unknown if an acute bout of hot HOWI alters cerebrovascular function. Using two experimental studies, we tested the hypotheses that dynamic cerebral autoregulation (dCA) and cerebrovascular reactivity (CVR) are improved during an acute bout of hot (HOT; 39 °C) vs. thermoneutral (TN; 35 °C) HOWI. Eighteen healthy participants (eight females) completed the dCA study, and 14 participants (6 females) completed the CVR study. Both studies consisted of two randomized (TNdCA vs. HOTdCA; TNCVR vs. HOTCVR) 45minute HOWI visits. Middle cerebral artery blood velocity (MCAvmean) was continuously recorded. dCA was assessed using a respiratory impedance device and analyzed via transfer gain and phase in the low-frequency band. CVR was assessed using stepped hypercapnia. Assessments were completed PRE and 30 minutes into HOWI. Values are reported as a change (Δ) from PRE (mean ± SD). There were no differences at PRE for either study. ΔMCAvmean was greater in TNdCA (TNdCA: 4 ± 4 vs. HOTdCA: -3 ± 5 cm/s; P < 0.01) and TNCVR (TNCVR: 5 ± 4 vs. HOTCVR: -1 ± 6 cm/s; P < 0.01) during HOWI. ΔGain was greater in HOTdCA during HOWI (TNdCA: -0.09 ± 0.15 vs. HOTdCA: 0.10 ± 0.17 cm/s/mmHg; P = 0.04). ΔPhase (P > 0.84) and ΔCVR (P > 0.94) were not different between conditions. These data indicate that hot and thermoneutral water immersion do not acutely alter cerebrovascular function in healthy, young adults.

10.
Sci Rep ; 11(1): 12776, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140586

ABSTRACT

Exercise likely has numerous benefits for brain and cognition. However, those benefits and their causes remain imprecisely defined. If the brain does benefit from exercise it does so primarily through cumulative brief, "acute" exposures over a lifetime. The Dementia Risk and Dynamic Response to Exercise (DYNAMIC) clinical trial seeks to characterize the acute exercise response in cerebral perfusion, and circulating neurotrophic factors in older adults with and without the apolipoprotein e4 genotype (APOE4), the strongest genetic predictor of sporadic, late onset Alzheimer's disease. DYNAMIC will enroll 60 older adults into a single moderate intensity bout of exercise intervention, measuring pre- and post-exercise cerebral blood flow (CBF) using arterial spin labeling, and neurotrophic factors. We expect that APOE4 carriers will have poor CBF regulation, i.e. slower return to baseline perfusion after exercise, and will demonstrate blunted neurotrophic response to exercise, with concentrations of neurotrophic factors positively correlating with CBF regulation. Preliminary findings on 7 older adults and 9 younger adults demonstrate that the experimental method can capture CBF and neurotrophic response over a time course. This methodology will provide important insight into acute exercise response and potential directions for clinical trial outcomes.ClinicalTrials.gov NCT04009629, Registered 05/07/2019.


Subject(s)
Dementia/epidemiology , Exercise/physiology , Adult , Age Factors , Aged , Aged, 80 and over , Female , Humans , Male , Proof of Concept Study , Risk Factors , Young Adult
11.
Contemp Clin Trials ; 107: 106457, 2021 08.
Article in English | MEDLINE | ID: mdl-34051350

ABSTRACT

There is evidence that exercise benefits the brain, but the mechanisms for this benefit are unclear. The chronic benefits of exercise are likely a product of discreet, acute responses in exercise-related blood biomarkers and brain metabolism. This acute exercise response has not been compared in aging and Alzheimer's Disease (AD). It is known that acute exercise elicits a powerful peripheral response in young individuals, and exercise-related biomarkers such as glucose and lactate readily penetrate the brain. How this changes with aging and neurodegenerative disease is less clear. It is critical to characterize and understand the acute effects of exercise, including different exercise intensities, in terms of the peripheral metabolic response and relationship with brain metabolism. This will help determine potential mechanisms for brain benefits of exercise and better inform the design of future clinical trials. The primary goal of the AEROBIC study is to characterize the acute exercise response of brain glucose metabolism and exercise-related blood biomarkers. We will measure how cerebral metabolism is affected by an acute bout of moderate and higher intensity exercise and characterize the extent to which this differs between cognitively healthy older adults and individuals with AD. Related to this primary goal, we will quantify the peripheral biomarker response to moderate and higher intensity exercise and how this relates to brain metabolic change in both groups.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Aged , Aging , Exercise , Humans , Pilot Projects
12.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R641-R652, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33533320

ABSTRACT

In healthy humans, fructose-sweetened water consumption increases blood pressure variability (BPV) and decreases spontaneous cardiovagal baroreflex sensitivity (cBRS) and heart rate variability (HRV). However, whether consuming commercially available soft drinks containing high levels of fructose elicits similar responses is unknown. We hypothesized that high-fructose corn syrup (HFCS)-sweetened soft drink consumption increases BPV and decreases cBRS and HRV to a greater extent compared with artificially sweetened (diet) and sucrose-sweetened (sucrose) soft drinks and water. Twelve subjects completed four randomized, double-blinded trials in which they drank 500 mL of water or commercially available soft drinks matched for taste and caffeine content. We continuously measured beat-to-beat blood pressure (photoplethysmography) and R-R interval (ECG) before and 30 min after drink consumption during supine rest for 5 min during spontaneous and paced breathing. BPV was evaluated using standard deviation (SD), average real variability (ARV), and successive variation (SV) methods for systolic and diastolic blood pressure. cBRS was assessed using the sequence method. HRV was evaluated using the root mean square of successive differences (RMSSD) in R-R interval. There were no differences between conditions in the magnitude of change from baseline in SD, ARV, and SV (P ≥ 0.07). There were greater reductions in cBRS during spontaneous breathing in the HFCS (-3 ± 5 ms/mmHg) and sucrose (-3 ± 5 ms/mmHg) trials compared with the water trial (+1 ± 5 ms/mmHg, P < 0.03). During paced breathing, HFCS evoked greater reductions in RMSSD compared with water (-26 ± 34 vs. +2 ± 26 ms, P < 0.01). These findings suggest that sugar-sweetened soft drink consumption alters cBRS and HRV but not BPV.


Subject(s)
Artificially Sweetened Beverages/adverse effects , Baroreflex , Blood Pressure , Heart Rate , Heart/innervation , High Fructose Corn Syrup/adverse effects , Sucrose/adverse effects , Sugar-Sweetened Beverages/adverse effects , Vagus Nerve/physiology , Adult , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Respiration , Time Factors , Young Adult
13.
Am J Physiol Renal Physiol ; 318(4): F1053-F1065, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32174139

ABSTRACT

We first tested the hypothesis that consuming a high-fructose corn syrup (HFCS)-sweetened soft drink augments kidney vasoconstriction to sympathetic stimulation compared with water (study 1). In a second study, we examined the mechanisms underlying these observations (study 2). In study 1, 13 healthy adults completed a cold pressor test, a sympathoexcitatory maneuver, before (preconsumption) and 30 min after drinking 500 mL of decarbonated HFCS-sweetened soft drink or water (postconsumption). In study 2, venous blood samples were obtained in 12 healthy adults before and 30 min after consumption of 500 mL water or soft drinks matched for caffeine content and taste, which were either artificially sweetened (Diet trial), sucrose-sweetened (Sucrose trial), or sweetened with HFCS (HFCS trial). In both study 1 and study 2, vascular resistance was calculated as mean arterial pressure divided by blood velocity, which was measured via Doppler ultrasound in renal and segmental arteries. In study 1, HFCS consumption increased vascular resistance in the segmental artery at rest (by 0.5 ± 0.6 mmHg·cm-1·s-1, P = 0.01) and during the cold pressor test (average change: 0.5 ± 1.0 mmHg·cm-1·s-1, main effect: P = 0.05). In study 2, segmental artery vascular resistance increased in the HFCS trial (by 0.8 ± 0.7 mmHg·cm-1·s-1, P = 0.02) but not in the other trials. Increases in serum uric acid were greater in the HFCS trial (0.3 ± 0.4 mg/dL, P ≤ 0.04) compared with the Water and Diet trials, and serum copeptin increased in the HFCS trial (by 0.8 ± 1.0 pmol/L, P = 0.06). These findings indicate that HFCS acutely increases vascular resistance in the kidneys, independent of caffeine content and beverage osmolality, which likely occurs via simultaneous elevations in circulating uric acid and vasopressin.


Subject(s)
Artificially Sweetened Beverages/adverse effects , High Fructose Corn Syrup/adverse effects , Kidney/blood supply , Renal Artery/innervation , Renal Circulation/drug effects , Sympathetic Nervous System/drug effects , Vascular Resistance/drug effects , Vasoconstriction/drug effects , Blood Flow Velocity , Caffeine/administration & dosage , Female , Healthy Volunteers , High Fructose Corn Syrup/administration & dosage , Humans , Male , Random Allocation , Renal Artery/diagnostic imaging , Sympathetic Nervous System/physiopathology , Time Factors , Up-Regulation , Uric Acid/blood , Vasopressins/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...