Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Biomaterials ; 291: 121910, 2022 12.
Article in English | MEDLINE | ID: mdl-36403325

ABSTRACT

Renal tubular cells frequently lose differentiation markers and physiological properties when propagated in conventional cell culture conditions. Embedding cells in 3D microenvironments or controlling their 3D assembly by bioprinting can enhance their physiological properties, which is beneficial for modeling diseases in vitro. A potential cellular source for modeling renal tubular physiology and kidney diseases in vitro are directly reprogrammed induced renal tubular epithelial cells (iRECs). iRECs were cultured in various biomaterials and as bioprinted tubular structures. They showed high compatibility with the embedding substrates and dispensing methods. The morphology of multicellular aggregates was substantially influenced by the 3D microenvironment. Transcriptomic analyses revealed signatures of differentially expressed genes specific to each of the selected biomaterials. Using a new cellular model for autosomal-dominant polycystic kidney disease, Pkd1-/- iRECs showed disrupted morphology in bioprinted tubules and a marked upregulation of the Aldehyde dehydrogenase 1a1 (Aldh1a1). In conclusion, 3D microenvironments strongly influence the morphology and expression profiles of iRECs, help to unmask disease phenotypes, and can be adapted to experimental demands. Combining a direct reprogramming approach with appropriate biomaterials will facilitate construction of biomimetic kidney tubules and disease models at the microscale.


Subject(s)
Biomimetics , Polycystic Kidney Diseases , Humans , Kidney , Epithelial Cells , Biocompatible Materials
2.
mBio ; 13(3): e0081922, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35491830

ABSTRACT

The opportunistic bacterium Pseudomonas aeruginosa can infect mucosal tissues of the human body. To persist at the mucosal barrier, this highly adaptable pathogen has evolved many strategies, including invasion of host cells. Here, we show that the P. aeruginosa lectin LecB binds and cross-links fucosylated receptors at the apical plasma membrane of epithelial cells. This triggers a signaling cascade via Src kinases and phosphoinositide 3-kinase (PI3K), leading to the formation of patches enriched with the basolateral marker phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the apical plasma membrane. This identifies LecB as a causative bacterial factor for activating this well-known host cell response that is elicited upon apical binding of P. aeruginosa. Downstream from PI3K, Rac1 is activated to cause actin rearrangement and the outgrowth of protrusions at the apical plasma membrane. LecB-triggered PI3K activation also results in aberrant recruitment of caveolin-1 to the apical domain. In addition, we reveal a positive feedback loop between PI3K activation and apical caveolin-1 recruitment, which provides a mechanistic explanation for the previously observed implication of caveolin-1 in P. aeruginosa host cell invasion. Interestingly, LecB treatment also reversibly removes primary cilia. To directly prove the role of LecB for bacterial uptake, we coated bacterium-sized beads with LecB, which drastically enhanced their endocytosis. Furthermore, LecB deletion and LecB inhibition with l-fucose diminished the invasion efficiency of P. aeruginosa bacteria. Taken together, the results of our study identify LecB as a missing link that can explain how PI3K signaling and caveolin-1 recruitment are triggered to facilitate invasion of epithelial cells from the apical side by P. aeruginosa. IMPORTANCE An intriguing feature of the bacterium P. aeruginosa is its ability to colonize highly diverse niches. P. aeruginosa can, besides forming biofilms, also enter and proliferate within epithelial host cells. Moreover, research during recent years has shown that P. aeruginosa possesses many different mechanisms to invade host cells. In this study, we identify LecB as a novel invasion factor. In particular, we show that LecB activates PI3K signaling, which is connected via a positive feedback loop to apical caveolin-1 recruitment and leads to actin rearrangement at the apical plasma membrane. This provides a unifying explanation for the previously reported implication of PI3K and caveolin-1 in host cell invasion by P. aeruginosa. In addition, our study adds a further function to the remarkable repertoire of the lectin LecB, which is all brought about by the capability of LecB to recognize fucosylated glycans on many different niche-specific host cell receptors.


Subject(s)
Lectins , Pseudomonas aeruginosa , Actins/metabolism , Caveolin 1/metabolism , Cell Membrane/metabolism , Humans , Lectins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pseudomonas aeruginosa/metabolism
3.
Hum Mol Genet ; 31(13): 2121-2136, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35043953

ABSTRACT

Renal ciliopathies are the leading cause of inherited kidney failure. In autosomal dominant polycystic kidney disease (ADPKD), mutations in the ciliary gene PKD1 lead to the induction of CCL2, which promotes macrophage infiltration in the kidney. Whether or not mutations in genes involved in other renal ciliopathies also lead to immune cells recruitment is controversial. Through the parallel analysis of patients' derived material and murine models, we investigated the inflammatory components of nephronophthisis (NPH), a rare renal ciliopathy affecting children and adults. Our results show that NPH mutations lead to kidney infiltration by neutrophils, macrophages and T cells. Contrary to ADPKD, this immune cell recruitment does not rely on the induction of CCL2 in mutated cells, which is dispensable for disease progression. Through an unbiased approach, we identified a set of inflammatory cytokines that are upregulated precociously and independently of CCL2 in murine models of NPH. The majority of these transcripts is also upregulated in NPH patient renal cells at a level exceeding those found in common non-immune chronic kidney diseases. This study reveals that inflammation is a central aspect in NPH and delineates a specific set of inflammatory mediators that likely regulates immune cell recruitment in response to NPH genes mutations.


Subject(s)
Ciliopathies , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Adult , Animals , Child , Ciliopathies/genetics , Fibrosis , Humans , Kidney , Mice , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics
4.
Biochem Biophys Res Commun ; 584: 19-25, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34753064

ABSTRACT

The primary cilium is a sensory organelle at the cell surface with integral functions in cell signaling. It contains a microtubular axoneme that is rooted in the basal body (BB) and serves as a scaffold for the movement of intraflagellar transport (IFT) particles by Kinesin-2 along the cilium. Ift88, a member of the anterograde moving IFT-B1 complex, as well as the Kinesin-2 subunit Kif3a are required for cilia formation. To facilitate signaling, the cilium restricts the access of molecules to its membrane ("ciliary gate"). This is thought to be mediated by cytoskeletal barriers ("subciliary domains") originating from the BB subdistal/distal appendages, the periciliary membrane compartment (PCMC) as well as the transition fibers and zone (TF/TZ). The PCMC is a poorly characterized membrane domain surrounding the ciliary base with exclusion of certain apical membrane proteins. Here we describe that Ift88, but not Kinesin-2, is required for the establishment of the PCMC in MDCK cells. Likewise, in C. elegans mutants of the Ift88 ortholog osm-5 fail to establish the PCMC, while Kinesin-2 deficient osm-3 mutants form PCMCs normally. Furthermore, disruption of IFT-B1 into two subcomplexes, while disrupting ciliogenesis, does not interfere with PCMC formation. Our findings suggest that cilia are not a prerequisite for the formation of the PCMC, and that separate machineries with partially overlapping functions are required for the establishment of each.


Subject(s)
Cell Membrane/metabolism , Cilia/metabolism , Epithelial Cells/metabolism , Kinesins/metabolism , Membrane Transport Proteins/metabolism , Animals , Basal Bodies/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cytoskeleton/metabolism , Dogs , Madin Darby Canine Kidney Cells , Microscopy, Fluorescence , Nerve Tissue Proteins/metabolism , Signal Transduction
5.
Sci Rep ; 11(1): 15139, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301992

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) affects more than 12 million people worldwide. Mutations in PKD1 and PKD2 cause cyst formation through unknown mechanisms. To unravel the pathogenic mechanisms in ADPKD, multiple studies have investigated transcriptional mis-regulation in cystic kidneys from patients and mouse models, and numerous dysregulated genes and pathways have been described. Yet, the concordance between studies has been rather limited. Furthermore, the cellular and genetic diversity in cystic kidneys has hampered the identification of mis-expressed genes in kidney epithelial cells with homozygous PKD mutations, which are critical to identify polycystin-dependent pathways. Here we performed transcriptomic analyses of Pkd1- and Pkd2-deficient mIMCD3 kidney epithelial cells followed by a meta-analysis to integrate all published ADPKD transcriptomic data sets. Based on the hypothesis that Pkd1 and Pkd2 operate in a common pathway, we first determined transcripts that are differentially regulated by both genes. RNA sequencing of genome-edited ADPKD kidney epithelial cells identified 178 genes that are concordantly regulated by Pkd1 and Pkd2. Subsequent integration of existing transcriptomic studies confirmed 31 previously described genes and identified 61 novel genes regulated by Pkd1 and Pkd2. Cluster analyses then linked Pkd1 and Pkd2 to mRNA splicing, specific factors of epithelial mesenchymal transition, post-translational protein modification and epithelial cell differentiation, including CD34, CDH2, CSF2RA, DLX5, HOXC9, PIK3R1, PLCB1 and TLR6. Taken together, this model-based integrative analysis of transcriptomic alterations in ADPKD annotated a conserved core transcriptomic profile and identified novel candidate genes for further experimental studies.


Subject(s)
Epithelial Cells/pathology , Epithelium/pathology , Polycystic Kidney, Autosomal Dominant/genetics , Transcription, Genetic/genetics , Animals , Cells, Cultured , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Mice , Mice, Inbred C57BL , Mutation/genetics , Polycystic Kidney Diseases/genetics , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/pathology , Signal Transduction/genetics , TRPP Cation Channels/genetics
6.
Autophagy ; 17(9): 2384-2400, 2021 09.
Article in English | MEDLINE | ID: mdl-32967521

ABSTRACT

Mutations in the PKD1 gene result in autosomal dominant polycystic kidney disease (ADPKD), the most common monogenetic cause of end-stage renal disease (ESRD) in humans. Previous reports suggested that PKD1, together with PKD2/polycystin-2, may function as a receptor-cation channel complex at cilia and on intracellular membranes and participate in various signaling pathways to regulate cell survival, proliferation and macroautophagy/autophagy. However, the exact molecular function of PKD1 and PKD2 has remained enigmatic. Here we used Pkd1-deficient mouse inner medullary collecting duct cells (mIMCD3) genetically deleted for Pkd1, and tubular epithelial cells isolated from nephrons of doxycycline-inducible conditional pkd1fl/fl;Pax8rtTA;TetOCre+ knockout mice to show that the lack of Pkd1 caused diminished lysosomal acidification, LAMP degradation and reduced CTSB/cathepsin B processing and activity. This led to an impairment of autophagosomal-lysosomal fusion, a lower delivery of ubiquitinated cargo from multivesicular bodies (MVB)/exosomes to lysosomes and an enhanced secretion of unprocessed CTSB into the extracellular space. The TFEB-dependent lysosomal biogenesis pathway was however unaffected. Pkd1-deficient cells exhibited increased activity of the calcium-dependent CAPN (calpain) proteases, probably due to a higher calcium influx. Consistent with this notion CAPN inhibitors restored lysosomal function, CTSB processing/activity and autophagosomal-lysosomal fusion, and blocked CTSB secretion and LAMP degradation in pkd1 knockout cells. Our data reveal for the first time a lysosomal function of PKD1 which keeps CAPN activity in check and ensures lysosomal integrity and a correct autophagic flux.Abbreviations: acCal: acetyl-calpastatin peptide; ADPKD: autosomal dominant polycystic kidney disease; CI-1: calpain inhibitor-1; CQ: chloroquine; Dox: doxycycline; EV: extracellular vesicles; EXO: exosomes; LAMP1/2: lysosomal-associated membrane protein 1/2; LGALS1/GAL1/galectin-1: lectin, galactose binding, soluble 1; LMP: lysosomal membrane permeabilization; mIMCD3: mouse inner medullary collecting duct cells; MV: microvesicles; MVB: multivesicular bodies; PAX8: paired box 8; PKD1/polycystin-1: polycystin 1, transient receptor potential channel interacting; PKD2/polycystin-2: polycystin 2, transient receptor potential cation channel; Tet: tetracycline; TFEB: transcription factor EB; VFM: vesicle-free medium; WT: wild-type.


Subject(s)
Calpain , TRPP Cation Channels , Animals , Autophagy , Calpain/metabolism , Lysosomes/metabolism , Mice , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
7.
J Am Soc Nephrol ; 31(5): 1035-1049, 2020 05.
Article in English | MEDLINE | ID: mdl-32238474

ABSTRACT

BACKGROUND: The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression. METHOD: To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines. RESULTS: Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells. CONCLUSIONS: STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.


Subject(s)
Kidney Tubules/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , STAT3 Transcription Factor/physiology , Aged, 80 and over , Animals , Cells, Cultured , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Cilia/metabolism , Dogs , Humans , Inflammation , Kidney Tubules/pathology , Macrophages/physiology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/immunology , Polycystic Kidney, Autosomal Dominant/metabolism , Specific Pathogen-Free Organisms , T-Lymphocytes/physiology , TRPP Cation Channels/deficiency , TRPP Cation Channels/metabolism
8.
Biochem Biophys Res Commun ; 521(2): 290-295, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31668373

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, the genes encoding polycystin 1 (PC1) and polycystin 2 (PC2), respectively. PC1 and PC2 localize to the primary cilium and form a protein complex, which is thought to regulate signaling events. PKD1 mutations are associated with a stronger phenotype than PKD2, suggesting the existence of PC1 specific functions in renal tubular cells. However, the evidence for diverging molecular functions is scant. The bending of cilia by fluid flow induces a reduction in cell size through a mechanism that involves the kinase LKB1 but not PC2. Here, using different in vitro approaches, we show that contrary to PC2, PC1 regulates cell size under flow and thus phenocopies the loss of cilia. PC1 is required to couple mechanical deflection of cilia to mTOR in tubular cells. This study pinpoints divergent functions of the polycystins in renal tubular cells that may be relevant to disease severity in ADPKD.


Subject(s)
Cell Size/drug effects , Polycystic Kidney, Autosomal Dominant/pathology , TRPP Cation Channels/physiology , Animals , Biomechanical Phenomena , Cells, Cultured , Cilia/metabolism , Humans , Kidney Tubules/cytology , Mutation , TOR Serine-Threonine Kinases , TRPP Cation Channels/genetics
9.
EMBO J ; 37(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29925518

ABSTRACT

Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy-related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell-autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.


Subject(s)
Chemokine CCL2/metabolism , Cilia/pathology , Kidney Diseases, Cystic/congenital , Polycystic Kidney, Autosomal Dominant/pathology , Protein Kinase C/genetics , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinases , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/metabolism , Cell Line , Cytoskeletal Proteins , Dogs , Epithelial Cells/metabolism , Female , HEK293 Cells , Humans , Kidney Diseases, Cystic/pathology , Kidney Tubules/cytology , Kidney Tubules/pathology , Macrophages/metabolism , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis/physiology , Polycystic Kidney, Autosomal Dominant/genetics , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , Zebrafish
10.
Pflugers Arch ; 469(2): 303-311, 2017 02.
Article in English | MEDLINE | ID: mdl-27987038

ABSTRACT

Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.


Subject(s)
Cell Differentiation/genetics , Epithelial Cells/metabolism , Genome/genetics , Kidney/metabolism , Animals , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA, Complementary/genetics , Embryonic Stem Cells/metabolism , Gene Editing/methods , Genotype , Humans , Mice , Polycystic Kidney Diseases/genetics , Transcription Activator-Like Effector Nucleases/genetics
11.
Nat Cell Biol ; 18(6): 657-67, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27214279

ABSTRACT

Autophagy is an adaptation mechanism that is vital for cellular homeostasis in response to various stress conditions. Previous reports indicate that there is a functional interaction between the primary cilium (PC) and autophagy. The PC, a microtubule-based structure present at the surface of numerous cell types, is a mechanical sensor. Here we show that autophagy induced by fluid flow regulates kidney epithelial cell volume in vitro and in vivo. PC ablation blocked autophagy induction and cell-volume regulation. In addition, inhibition of autophagy in ciliated cells impaired the flow-dependent regulation of cell volume. PC-dependent autophagy can be triggered either by mTOR inhibition or a mechanism dependent on the polycystin 2 channel. Only the LKB1-AMPK-mTOR signalling pathway was required for the flow-dependent regulation of cell volume by autophagy. These findings suggest that therapies regulating autophagy should be considered in developing treatments for PC-related diseases.


Subject(s)
Autophagy , Cell Physiological Phenomena , Cilia/physiology , Epithelial Cells/cytology , Epithelial Cells/physiology , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/physiology , AMP-Activated Protein Kinases/physiology , Animals , Cell Size , Dogs , Immunoblotting , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Microscopy, Fluorescence , Protein Serine-Threonine Kinases/physiology , Signal Transduction , TOR Serine-Threonine Kinases/physiology
12.
Clin Kidney J ; 8(6): 690-4, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26613025

ABSTRACT

COL4A5 mutations are a known cause of Alport syndrome, which typically manifests with haematuria, hearing loss and ocular symptoms. Here we report on a 16-year-old male patient with a negative family history who presented with proteinuria, progressive renal failure and haemolysis, but without overt haematuria or hearing loss. A renal biopsy revealed features of atypical IgA nephropathy, while a second biopsy a year later showed features of focal segmental glomerulosclerosis, but was finally diagnosed as chronic thrombotic microangiopathy. Targeted sequencing of candidate genes for steroid-resistant nephrotic syndrome and congenital thrombotic microangiopathy was negative. Despite all therapeutic efforts, including angiotensin-converting enzyme inhibition, immunosuppressive therapy, plasma exchanges and rituximab, the patient progressed to end-stage renal disease. When a male cousin presented with nephrotic syndrome years later, whole-exome sequencing identified a shared disruptive COL4A5 mutation (p.F222C) that showed X-linked segregation. Thus, mutations in COL4A5 give rise to a broader spectrum of clinical presentation than commonly suspected, highlighting the benefits of comprehensive rather than candidate genetic testing in young patients with otherwise unexplained glomerular disease. Our results are in line with an increasing number of atypical presentations of single-gene disorders identified through genome-wide sequencing.

13.
PLoS One ; 10(10): e0140378, 2015.
Article in English | MEDLINE | ID: mdl-26465598

ABSTRACT

Ift88 is a central component of the intraflagellar transport (Ift) complex B, essential for the building of cilia and flagella from single cell organisms to mammals. Loss of Ift88 results in the absence of cilia and causes left-right asymmetry defects, disordered Hedgehog signaling, and polycystic kidney disease, all of which are explained by aberrant ciliary function. In addition, a number of extraciliary functions of Ift88 have been described that affect the cell-cycle, mitosis, and targeting of the T-cell receptor to the immunological synapse. Similarly, another essential ciliary molecule, the kinesin-2 subunit Kif3a, which transports Ift-B in the cilium, affects microtubule (MT) dynamics at the leading edge of migrating cells independently of cilia. We now show that loss of Ift88 impairs cell migration irrespective of cilia. Ift88 is required for the polarization of migrating MDCK cells, and Ift88 depleted cells have fewer MTs at the leading edge. Neither MT dynamics nor MT nucleation are dependent on Ift88. Our findings dissociate the function of Ift88 from Kif3a outside the cilium and suggest a novel extraciliary function for Ift88. Future studies need to address what unifying mechanism underlies the different extraciliary functions of Ift88.


Subject(s)
Carrier Proteins/metabolism , Cell Movement , Animals , Cell Polarity , Cilia , Dogs , Flagella/metabolism , Kinesins/metabolism , Madin Darby Canine Kidney Cells
15.
Development ; 142(1): 174-84, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25516973

ABSTRACT

Cilia are microtubule-based organelles that are present on most cells and are required for normal tissue development and function. Defective cilia cause complex syndromes with multiple organ manifestations termed ciliopathies. A crucial step during ciliogenesis in multiciliated cells (MCCs) is the association of future basal bodies with the apical plasma membrane, followed by their correct spacing and planar orientation. Here, we report a novel role for ELMO-DOCK1, which is a bipartite guanine nucleotide exchange factor complex for the small GTPase Rac1, and for the membrane-cytoskeletal linker Ezrin, in regulating centriole/basal body migration, docking and spacing. Downregulation of each component results in ciliopathy-related phenotypes in zebrafish and disrupted ciliogenesis in Xenopus epidermal MCCs. Subcellular analysis revealed a striking impairment of basal body docking and spacing, which is likely to account for the observed phenotypes. These results are substantiated by showing a genetic interaction between elmo1 and ezrin b. Finally, we provide biochemical evidence that the ELMO-DOCK1-Rac1 complex influences Ezrin phosphorylation and thereby probably serves as an important molecular switch. Collectively, we demonstrate that the ELMO-Ezrin complex orchestrates ciliary basal body migration, docking and positioning in vivo.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Basal Bodies/metabolism , Cilia/metabolism , Cytoskeletal Proteins/metabolism , Xenopus Proteins/metabolism , Zebrafish Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Axoneme/metabolism , Axoneme/ultrastructure , Cell Membrane/metabolism , Cilia/ultrastructure , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/ultrastructure , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Models, Biological , Phosphorylation , Protein Binding , Xenopus laevis , Zebrafish/embryology , rac GTP-Binding Proteins
16.
J Cell Biol ; 207(2): 269-82, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25349261

ABSTRACT

Cilia are microtubule-based organelles that assemble via intraflagellar transport (IFT) and function as signaling hubs on eukaryotic cells. IFT relies on molecular motors and IFT complexes that mediate the contacts with ciliary cargo. To elucidate the architecture of the IFT-B complex, we reconstituted and purified the nonameric IFT-B core from Chlamydomonas reinhardtii and determined the crystal structures of C. reinhardtii IFT70/52 and Tetrahymena IFT52/46 subcomplexes. The 2.5-Å resolution IFT70/52 structure shows that IFT52330-370 is buried deeply within the IFT70 tetratricopeptide repeat superhelix. Furthermore, the polycystic kidney disease protein IFT88 binds IFT52281-329 in a complex that interacts directly with IFT70/IFT52330-381 in trans. The structure of IFT52C/IFT46C was solved at 2.3 Å resolution, and we show that it is essential for IFT-B core integrity by mediating interaction between IFT88/70/52/46 and IFT81/74/27/25/22 subcomplexes. Consistent with this, overexpression of mammalian IFT52C in MDCK cells is dominant-negative and causes IFT protein mislocalization and disrupted ciliogenesis. These data further rationalize several ciliogenesis phenotypes of IFT mutant strains.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Plant Proteins/physiology , Protozoan Proteins/physiology , Tetrahymena/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Alignment
17.
Cell Logist ; 4(1): e28928, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24843830

ABSTRACT

Apical lumen formation is a key step during epithelial morphogenesis of tubular organs. Appropriate transport and targeting of apical proteins to the apical membrane initiation site (AMIS) plays a crucial role in establishing a solitary, central lumen. FIP5, a Rab11-interacting protein, is an important regulator that directs apical endosome trafficking along microtubules toward the AMIS during cytokinesis. However, it is unknown which molecular motor(s) transports FIP5-positive apical endosomes during lumen initiation, and how this process is regulated. In this study, we demonstrate that the interaction of FIP5 with the microtubule motor, Kinesin-2, is required for the movement of FIP5-endosomes and delivery of these endosomes from centrosomes to the cleavage furrow during apical lumen initiation. Loss of Kinesin-2 disrupts targeting of apical proteins to the AMIS and results in multiple lumen formation in MDCK cysts. Our data provide more details to the molecular mechanism of FIP5-dependent apical trafficking during apical lumen formation.

18.
Cell ; 154(4): 859-74, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23953116

ABSTRACT

Mammalian target of rapamycin complex 1 (mTORC1) controls growth and survival in response to metabolic cues. Oxidative stress affects mTORC1 via inhibitory and stimulatory inputs. Whereas downregulation of TSC1-TSC2 activates mTORC1 upon oxidative stress, the molecular mechanism of mTORC1 inhibition remains unknown. Here, we identify astrin as an essential negative mTORC1 regulator in the cellular stress response. Upon stress, astrin inhibits mTORC1 association and recruits the mTORC1 component raptor to stress granules (SGs), thereby preventing mTORC1-hyperactivation-induced apoptosis. In turn, balanced mTORC1 activity enables expression of stress factors. By identifying astrin as a direct molecular link between mTORC1, SG assembly, and the stress response, we establish a unifying model of mTORC1 inhibition and activation upon stress. Importantly, we show that in cancer cells, apoptosis suppression during stress depends on astrin. Being frequently upregulated in tumors, astrin is a potential clinically relevant target to sensitize tumors to apoptosis.


Subject(s)
Apoptosis , Breast Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cytoplasmic Granules/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1 , Oxidative Stress , Regulatory-Associated Protein of mTOR
20.
Nat Genet ; 45(8): 951-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23793029

ABSTRACT

Nephronophthisis is an autosomal recessive cystic kidney disease that leads to renal failure in childhood or adolescence. Most NPHP gene products form molecular networks. Here we identify ANKS6 as a new NPHP family member that connects NEK8 (NPHP9) to INVS (NPHP2) and NPHP3. We show that ANKS6 localizes to the proximal cilium and confirm its role in renal development through knockdown experiments in zebrafish and Xenopus laevis. We also identify six families with ANKS6 mutations affected by nephronophthisis, including severe cardiovascular abnormalities, liver fibrosis and situs inversus. The oxygen sensor HIF1AN hydroxylates ANKS6 and INVS and alters the composition of the ANKS6-INVS-NPHP3 module. Knockdown of Hif1an in Xenopus results in a phenotype that resembles loss of other NPHP proteins. Network analyses uncovered additional putative NPHP proteins and placed ANKS6 at the center of this NPHP module, explaining the overlapping disease manifestation caused by mutation in ANKS6, NEK8, INVS or NPHP3.


Subject(s)
Kidney Diseases, Cystic/genetics , Kinesins/genetics , Nuclear Proteins/genetics , Protein Kinases/genetics , Transcription Factors/genetics , Animals , Cilia/metabolism , Consanguinity , Exons , Gene Knockdown Techniques , Humans , Introns , Kidney Diseases, Cystic/metabolism , Kinesins/metabolism , Mice , Mutation , NIMA-Related Kinases , Nuclear Proteins/metabolism , Phenotype , Polycystic Kidney Diseases/genetics , Protein Binding , Protein Interaction Maps , Protein Kinases/metabolism , Protein Transport , Transcription Factors/metabolism , Xenopus/embryology , Xenopus/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...