Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Magn Reson Med ; 90(4): 1695-1712, 2023 10.
Article in English | MEDLINE | ID: mdl-37278990

ABSTRACT

PURPOSE: To introduce the dipolectric antenna: a novel RF coil design for high-field MRI using a combination of a dipole antenna with a loop-coupled dielectric resonator antenna. METHODS: Simulations in human voxel model Duke involving 8-, 16-, and 38-channel dipolectric antenna arrays for brain MRI were conducted. An 8-channel dipolectric antenna for occipital lobe MRI at 7 T was designed and constructed. The array was built of four dielectric resonator antennas (dielectric constant = 1070) and four segmented dipole antennas. In vivo MRI experiments were conducted in one subject, and the SNR performance was benchmarked against a commercial 32-channel head coil. RESULTS: A 38-channel dipolectric antenna array provided the highest whole-brain SNR (up to a 2.3-fold SNR gain in the center of the Duke's head vs. an 8-channel dipolectric antenna array). Dipolectric antenna arrays driven in dipole-only mode (with dielectric resonators used as receive-only) yielded the highest transmit performance. The constructed 8-channel dipolectric antenna array provided up to threefold higher in vivo peripheral SNR when compared with a 32-channel commercial head coil. CONCLUSION: Dipolectric antenna can be considered a promising approach to enhance SNR in human brain MRI at 7 T. This strategy can be used to develop novel multi-channel arrays for different high-field MRI applications.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Equipment Design , Phantoms, Imaging , Brain/diagnostic imaging , Occipital Lobe , Signal-To-Noise Ratio
2.
Cancers (Basel) ; 15(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37190232

ABSTRACT

Thermal Magnetic Resonance (ThermalMR) is a theranostic concept that combines diagnostic magnetic resonance imaging (MRI) with targeted thermal therapy in the hyperthermia (HT) range using a radiofrequency (RF) applicator in an integrated system. ThermalMR adds a therapeutic dimension to a diagnostic MRI device. Focused, targeted RF heating of deep-seated brain tumors, accurate non-invasive temperature monitoring and high-resolution MRI are specific requirements of ThermalMR that can be addressed with novel concepts in RF applicator design. This work examines hybrid RF applicator arrays combining loop and self-grounded bow-tie (SGBT) dipole antennas for ThermalMR of brain tumors, at magnetic field strengths of 7.0 T, 9.4 T and 10.5 T. These high-density RF arrays improve the feasible transmission channel count, and provide additional degrees of freedom for RF shimming not afforded by using dipole antennas only, for superior thermal therapy and MRI diagnostics. These improvements are especially relevant for ThermalMR theranostics of deep-seated brain tumors because of the small surface area of the head. ThermalMR RF applicators with the hybrid loop+SGBT dipole design outperformed applicators using dipole-only and loop-only designs, with superior MRI performance and targeted RF heating. Array variants with a horse-shoe configuration covering an arc (270°) around the head avoiding the eyes performed better than designs with 360° coverage, with a 1.3 °C higher temperature rise inside the tumor while sparing healthy tissue. Our EMF and temperature simulations performed on a virtual patient with a clinically realistic intracranial tumor provide a technical foundation for implementation of advanced RF applicators tailored for ThermalMR theranostics of brain tumors.

3.
Tomography ; 9(2): 603-620, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36961008

ABSTRACT

Postoperative care of orthopedic implants is aided by imaging to assess the healing process and the implant status. MRI of implantation sites might be compromised by radiofrequency (RF) heating and RF transmission field (B1+) inhomogeneities induced by electrically conducting implants. This study examines the applicability of safe and B1+-distortion-free MRI of implantation sites using optimized parallel RF field transmission (pTx) based on a multi-objective genetic algorithm (GA). Electromagnetic field simulations were performed for eight eight-channel RF array configurations (f = 297.2 MHz), and the most efficient array was manufactured for phantom experiments at 7.0 T. Circular polarization (CP) and orthogonal projection (OP) algorithms were applied for benchmarking the GA-based shimming. B1+ mapping and MR thermometry and imaging were performed using phantoms mimicking muscle containing conductive implants. The local SAR10g of the entire phantom in GA was 12% and 43.8% less than the CP and OP, respectively. Experimental temperature mapping using the CP yielded ΔT = 2.5-3.0 K, whereas the GA induced no extra heating. GA-based shimming eliminated B1+ artefacts at implantation sites and enabled uniform gradient-echo MRI. To conclude, parallel RF transmission with GA-based excitation vectors provides a technical foundation en route to safe and B1+-distortion-free MRI of implantation sites.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Algorithms , Heating
4.
MAGMA ; 36(2): 257-277, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36920549

ABSTRACT

OBJECTIVE: To examine the feasibility of human cardiac MR (CMR) at 14.0 T using high-density radiofrequency (RF) dipole transceiver arrays in conjunction with static and dynamic parallel transmission (pTx). MATERIALS AND METHODS: RF arrays comprised of self-grounded bow-tie (SGBT) antennas, bow-tie (BT) antennas, or fractionated dipole (FD) antennas were used in this simulation study. Static and dynamic pTx were applied to enhance transmission field (B1+) uniformity and efficiency in the heart of the human voxel model. B1+ distribution and maximum specific absorption rate averaged over 10 g tissue (SAR10g) were examined at 7.0 T and 14.0 T. RESULTS: At 14.0 T static pTx revealed a minimum B1+ROI efficiency of 0.91 µT/√kW (SGBT), 0.73 µT/√kW (BT), and 0.56 µT/√kW (FD) and maximum SAR10g of 4.24 W/kg, 1.45 W/kg, and 2.04 W/kg. Dynamic pTx with 8 kT points indicate a balance between B1+ROI homogeneity (coefficient of variation < 14%) and efficiency (minimum B1+ROI > 1.11 µT/√kW) at 14.0 T with a maximum SAR10g < 5.25 W/kg. DISCUSSION: MRI of the human heart at 14.0 T is feasible from an electrodynamic and theoretical standpoint, provided that multi-channel high-density antennas are arranged accordingly. These findings provide a technical foundation for further explorations into CMR at 14.0 T.


Subject(s)
Heart , Magnetic Resonance Imaging , Humans , Heart/diagnostic imaging , Computer Simulation , Radio Waves , Phantoms, Imaging , Equipment Design
5.
Bioact Mater ; 25: 86-94, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36733929

ABSTRACT

Magnesium (Mg)-based implants have re-emerged in orthopaedic surgery as an alternative to permanent implants. Literature reveals little information on how the degradation of biodegradable implants may introduce safety implications for patient follow-up using medical imaging. Magnetic resonance imaging (MRI) benefits post-surgery monitoring of bone healing and implantation sites. Previous studies demonstrated radiofrequency (RF) heating of permanent implants caused by electromagnetic fields used in MRI. Our investigation is the first to report the effect of the degradation layer on RF-induced heating of biodegradable orthopaedic implants. WE43 orthopaedic compression screws underwent in vitro degradation. Imaging techniques were applied to assess the corrosion process and the material composition of the degraded screws. Temperature measurements were performed to quantify implant heating with respect to the degradation layer. For comparison, a commercial titanium implant screw was used. Strongest RF induced heating was observed for non-degraded WE43 screw samples. Implant heating had shown to decrease with the formation of the degradation layer. No statistical differences were observed for heating of the non-degraded WE43 material and the titanium equivalent. The highest risk of implant RF heating is most pronounced for Mg-based screws prior to degradation. Amendment to industry standards for MRI safety assessment is warranted to include biodegradable materials.

6.
Bioact Mater ; 15: 382-391, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35386351

ABSTRACT

Magnesium (Mg) implants have shown to cause image artefacts or distortions in magnetic resonance imaging (MRI). Yet, there is a lack of information on how the degradation of Mg-based implants influences the image quality of MRI examinations. In this study, Mg-based implants are analysed in vitro, ex vivo, and in the clinical setting for various magnetic field strengths with the aim to quantify metallic artefact behaviour. In vitro corroded Mg-based screws and a titanium (Ti) equivalent were imaged according to the ASTM F2119. Mg-based and Ti pins were also implanted into rat femurs for different time points and scanned to provide insights on the influence of soft and hard tissue on metallic artefact. Additionally, MRI data of patients with scaphoid fractures treated with CE-approved Mg-based compression screws (MAGNEZIX®) were analysed at various time points post-surgery. The artefact production of the Mg-based material decreased as implant material degraded in all settings. The worst-case imaging scenario was determined to be when the imaging plane was selected to be perpendicular to the implant axis. Moreover, the Mg-based implant outperformed the Ti equivalent in all experiments by producing lower metallic artefact (p < 0.05). This investigation demonstrates that Mg-based implants generate significantly lower metallic distortion in MRI when compared to Ti. Our positive findings suggest and support further research into the application of Mg-based implants including post-operative care facilitated by MRI monitoring of degradation kinetics and bone/tissue healing processes.

7.
Magn Reson Med ; 87(4): 1952-1970, 2022 04.
Article in English | MEDLINE | ID: mdl-34812528

ABSTRACT

PURPOSE: Low SNR in fluorine-19 (19 F) MRI benefits from cryogenically-cooled transceive surface RF probes (CRPs), but strong B1 inhomogeneities hinder quantification. Rapid acquisition with refocused echoes (RARE) is an SNR-efficient method for MRI of neuroinflammation with perfluorinated compounds but lacks an analytical signal intensity equation to retrospectively correct B1 inhomogeneity. Here, a workflow was proposed and validated to correct and quantify 19 F-MR signals from the inflamed mouse brain using a 19 F-CRP. METHODS: In vivo 19 F-MR images were acquired in a neuroinflammation mouse model with a quadrature 19 F-CRP using an imaging setup including 3D-printed components to acquire co-localized anatomical and 19 F images. Model-based corrections were validated on a uniform 19 F phantom and in the neuroinflammatory model. Corrected 19 F-MR images were benchmarked against reference images and overlaid on in vivo 1 H-MR images. Computed concentration uncertainty maps using Monte Carlo simulations served as a measure of performance of the B1 corrections. RESULTS: Our study reports on the first quantitative in vivo 19 F-MR images of an inflamed mouse brain using a 19 F-CRP, including in vivo T1 calculations for 19 F-nanoparticles during pathology and B1 corrections for 19 F-signal quantification. Model-based corrections markedly improved 19 F-signal quantification from errors > 50% to < 10% in a uniform phantom (p < 0.001). Concentration uncertainty maps ex vivo and in vivo yielded uncertainties that were generally < 25%. Monte Carlo simulations prescribed SNR ≥ 10.1 to reduce uncertainties < 10%, and SNR ≥ 4.25 to achieve uncertainties < 25%. CONCLUSION: Our model-based correction method facilitated 19 F signal quantification in the inflamed mouse brain when using the SNR-boosting 19 F-CRP technology, paving the way for future low-SNR 19 F-MRI applications in vivo.


Subject(s)
Magnetic Resonance Imaging , Neuroinflammatory Diseases , Animals , Magnetic Resonance Imaging/methods , Mice , Phantoms, Imaging , Radio Waves , Retrospective Studies
8.
Magn Reson Med ; 86(5): 2862-2879, 2021 11.
Article in English | MEDLINE | ID: mdl-34169546

ABSTRACT

PURPOSE: Design, implementation, evaluation, and application of a 32-channel Self-Grounded Bow-Tie (SGBT) transceiver array for cardiac MR (CMR) at 7.0T. METHODS: The array consists of 32 compact SGBT building blocks. Transmission field ( B1+ ) shimming and radiofrequency safety assessment were performed with numerical simulations and benchmarked against phantom experiments. In vivo B1+ efficiency mapping was conducted with actual flip angle imaging. The array's applicability for accelerated high spatial resolution 2D FLASH CINE imaging of the heart was examined in a volunteer study (n = 7). RESULTS: B1+ shimming provided a uniform field distribution suitable for female and male subjects. Phantom studies demonstrated an excellent agreement between simulated and measured B1+ efficiency maps (7% mean difference). The SGBT array afforded a spatial resolution of (0.8 × 0.8 × 2.5) mm3 for 2D CINE FLASH which is by a factor of 12 superior to standardized cardiovascular MR (CMR) protocols. The density of the SGBT array supports 1D acceleration of up to R = 4 (mean signal-to-noise ratio (whole heart) ≥ 16.7, mean contrast-to-noise ratio ≥ 13.5) without impairing image quality significantly. CONCLUSION: The compact SGBT building block facilitates a modular high-density array that supports accelerated and high spatial resolution CMR at 7.0T. The array provides a technological basis for future clinical assessment of parallel transmission techniques.


Subject(s)
Heart , Radio Waves , Equipment Design , Female , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Phantoms, Imaging , Signal-To-Noise Ratio
9.
Cancers (Basel) ; 13(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919701

ABSTRACT

Thermal intervention is a potent sensitizer of cells to chemo- and radiotherapy in cancer treatment. Glioblastoma multiforme (GBM) is a potential clinical target, given the cancer's aggressive nature and resistance to current treatment options. This drives research into optimization algorithms for treatment planning as well as radiofrequency (RF) applicator design for treatment delivery. In this work, nine clinically realistic GBM target volumes (TVs) for thermal intervention are compared using three optimization algorithms and up to ten RF applicator designs for thermal magnetic resonance. Hyperthermia treatment planning (HTP) was successfully performed for all cases, including very small, large, and even split target volumes. Minimum requirements formulated for the metrics assessing HTP outcome were met and exceeded for all patient specific cases. Results indicate a 16 channel two row arrangement to be most promising. HTP of TVs with a small extent in the cranial-caudal direction in conjunction with a large radial extent remains challenging despite the advanced optimization algorithms used. In general, deep seated targets are favorable. Overall, our findings indicate that a one-size-fits-all RF applicator might not be the ultimate approach in hyperthermia of brain tumors. It stands to reason that modular and reconfigurable RF applicator configurations might best suit the needs of targeting individual GBM geometry.

10.
Cancers (Basel) ; 13(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670862

ABSTRACT

Glioblastoma multiforme (GBM) is the most lethal and common brain tumor. Combining hyperthermia with chemotherapy and/or radiotherapy improves the survival of GBM patients. Thermal magnetic resonance (ThermalMR) is a hyperthermia variant that exploits radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. The RF signals' power and phase need to be supervised to manage the formation of the energy focal point, accurate thermal dose control, and safety. Patient position during treatment also needs to be monitored to ensure the efficacy of the treatment and avoid damages to healthy tissue. This work reports on a multi-channel RF signal supervision module that is capable of monitoring and regulating RF signals and detecting patient motion. System characterization was performed for a broad range of frequencies. Monte-Carlo simulations were performed to examine the impact of power and phase errors on hyperthermia performance. The supervision module's utility was demonstrated in characterizing RF power amplifiers and being a key part of a feedback control loop regulating RF signals in heating experiments. Electromagnetic field simulations were conducted to calculate the impact of patient displacement during treatment. The supervision module was experimentally tested for detecting patient motion to a submillimeter level. To conclude, this work presents a cost-effective RF supervision module that is a key component for a hyperthermia hardware system and forms a technological basis for future ThermalMR applications.

11.
IEEE Trans Med Imaging ; 40(4): 1267-1278, 2021 04.
Article in English | MEDLINE | ID: mdl-33439836

ABSTRACT

Magnetic resonance has become a backbone of medical imaging but suffers from inherently low sensitivity. This can be alleviated by improved radio frequency (RF) coils. Multi-turn multi-gap coaxial coils (MTMG-CCs) introduced in this work are flexible, form-fitting RF coils extending the concept of the single-turn single-gap CC by introducing multiple cable turns and/or gaps. It is demonstrated that this enables free choice of the coil diameter, and thus, optimizing it for the application to a certain anatomical site, while operating at the self-resonance frequency. An equivalent circuit for MTMG-CCs is modeled to predict their resonance frequency. Possible configurations regarding size, number of turns and gaps, and cable types for different B 0 field strengths are calculated. Standard copper wire loop coils (SCs) and flexible CCs made from commercial coaxial cable were fabricated as receive-only coils for 3 T and transmit/receive coils at 7 T with diameters between 4 and 15 cm. Electromagnetic simulations are used to investigate the currents on MTMG-CCs, and demonstrate comparable specific absorption rate of 7 T CCs and SCs. Signal-to-noise ratio (SNR), transmit efficiency, and active detuning performance of CCs were compared in bench tests and MR experiments. For the form-fitted receive-only CCs at 3 T no significant SNR degradation was found as compared to flat SCs on a balloon phantom. Form-fitted transmit/receive CCs at 7 T showed higher transmit efficiency and SNR. MTMG-CCs can be sized to optimize sensitivity, are flexible and lightweight, and could therefore enable the fabrication of wearable coils with improved patient comfort.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Equipment Design , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
12.
Int J Hyperthermia ; 37(1): 549-563, 2020.
Article in English | MEDLINE | ID: mdl-32484019

ABSTRACT

Purpose: Thermal intervention is a potent sensitizer of cells to chemo- and radiotherapy in cancer treatment. Glioblastoma multiforme (GBM) is a potential clinical target, given the cancer's aggressive nature and resistance to current treatment options. The annular phased array (APA) technique employing electromagnetic waves in the radiofrequency (RF) range allows for localized temperature increase in deep seated target volumes (TVs). Reports on clinical applications of the APA technique in the brain are still missing. Ultrahigh field magnetic resonance (MR) employs higher frequencies than conventional MR and has potential to provide focal temperature manipulation, high resolution imaging and noninvasive temperature monitoring using an integrated RF applicator (ThermalMR). This work examines the applicability of RF applicator concepts for ThermalMR of brain tumors at 297 MHz (7.0 Tesla).Methods: Electromagnetic field (EMF) simulations are performed for clinically realistic data based on GBM patients. Two algorithms are used for specific RF energy absorption rate based thermal intervention planning for small and large TVs in the brain, aiming at maximum RF power deposition or RF power uniformity in the TV for 10 RF applicator designs.Results: For both TVs , the power optimization outperformed the uniformity optimization. The best results for the small TV are obtained for the 16 element interleaved RF applicator using an elliptical antenna arrangement with water bolus. The two row elliptical RF applicator yielded the best result for the large TV.Discussion: This work investigates the capacity of ThermalMR to achieve targeted thermal interventions in model systems resembling human brain tissue and brain tumors.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Magnetic Resonance Imaging/methods , Radiofrequency Ablation/methods , Humans
13.
Magn Reson Med ; 84(5): 2684-2701, 2020 11.
Article in English | MEDLINE | ID: mdl-32447779

ABSTRACT

PURPOSE: The use of surface radiofrequency (RF) coils is common practice to boost sensitivity in (pre)clinical MRI. The number of transceive surface RF coils is rapidly growing due to the surge in cryogenically cooled RF technology and ultrahigh-field MRI. Consequently, there is an increasing need for effective correction of the excitation field ( B1+ ) inhomogeneity inherent in these coils. Retrospective B1 correction permits quantitative MRI, but this usually requires a pulse sequence-specific analytical signal intensity (SI) equation. Such an equation is not available for fast spin-echo (Rapid Acquisition with Relaxation Enhancement, RARE) MRI. Here we present, test, and validate retrospective B1 correction methods for RARE. METHODS: We implemented the commonly used sensitivity correction and developed an empirical model-based method and a hybrid combination of both. Tests and validations were performed with a cryogenically cooled RF probe and a single-loop RF coil. Accuracy of SI quantification and T1 contrast were evaluated after correction. RESULTS: The three described correction methods achieved dramatic improvements in B1 homogeneity and significantly improved SI quantification and T1 contrast, with mean SI errors reduced from >40% to >10% following correction in all cases. Upon correction, images of phantoms and mouse heads demonstrated homogeneity comparable to that of images acquired with a volume resonator. This was quantified by SI profile, SI ratio (error < 10%), and percentage of integral uniformity (PIU > 80% in vivo and ex vivo compared to PIU > 87% with the reference RF coil). CONCLUSION: This work demonstrates the efficacy of three B1 correction methods tailored for transceive surface RF probes and RARE MRI. The corrected images are suitable for quantification and show comparable results between the three methods, opening the way for T1 measurements and X-nuclei quantification using surface transceiver RF coils. This approach is applicable to other MR techniques for which no analytical SI exists.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Animals , Mice , Phantoms, Imaging , Retrospective Studies
14.
Cancers (Basel) ; 12(5)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344914

ABSTRACT

Targeted radiofrequency (RF) heating induced hyperthermia has a wide range of applications, ranging from adjunct anti-cancer treatment to localized release of drugs. Focal RF heating is usually approached using time-consuming nonconvex optimization procedures or approximations, which significantly hampers its application. To address this limitation, this work presents an algorithm that recasts the problem as a semidefinite program and quickly solves it to global optimality, even for very large (human voxel) models. The target region and a desired RF power deposition pattern as well as constraints can be freely defined on a voxel level, and the optimum application RF frequencies and time-multiplexed RF excitations are automatically determined. 2D and 3D example applications conducted for test objects containing pure water (rtarget = 19 mm, frequency range: 500-2000 MHz) and for human brain models including brain tumors of various size (r1 = 20 mm, r2 = 30 mm, frequency range 100-1000 MHz) and locations (center, off-center, disjoint) demonstrate the applicability and capabilities of the proposed approach. Due to its high performance, the algorithm can solve typical clinical problems in a few seconds, making the presented approach ideally suited for interactive hyperthermia treatment planning, thermal dose and safety management, and the design, rapid evaluation, and comparison of RF applicator configurations.

15.
NMR Biomed ; 33(5): e4274, 2020 05.
Article in English | MEDLINE | ID: mdl-32078208

ABSTRACT

The objective of this study was the design, implementation, evaluation and application of a compact wideband self-grounded bow-tie (SGBT) radiofrequency (RF) antenna building block that supports anatomical proton (1 H) MRI, fluorine (19 F) MRI, MR thermometry and broadband thermal intervention integrated in a whole-body 7.0 T system. Design considerations and optimizations were conducted with numerical electromagnetic field (EMF) simulations to facilitate a broadband thermal intervention frequency of the RF antenna building block. RF transmission (B1+ ) field efficiency and specific absorption rate (SAR) were obtained in a phantom, and the thigh of human voxel models (Ella, Duke) for 1 H and 19 F MRI at 7.0 T. B1+ efficiency simulations were validated with actual flip-angle imaging measurements. The feasibility of thermal intervention was examined by temperature simulations (f = 300, 400 and 500 MHz) in a phantom. The RF heating intervention (Pin = 100 W, t = 120 seconds) was validated experimentally using the proton resonance shift method and fiberoptic probes for temperature monitoring. The applicability of the SGBT RF antenna building block for in vivo 1 H and 19 F MRI was demonstrated for the thigh and forearm of a healthy volunteer. The SGBT RF antenna building block facilitated 19 F and 1 H MRI at 7.0 T as well as broadband thermal intervention (234-561 MHz). For the thigh of the human voxel models, a B1+ efficiency ≥11.8 µT/√kW was achieved at a depth of 50 mm. Temperature simulations and heating experiments in a phantom demonstrated a temperature increase ΔT >7 K at a depth of 10 mm. The compact SGBT antenna building block provides technology for the design of integrated high-density RF applicators and for the study of the role of temperature in (patho-) physiological processes by adding a thermal intervention dimension to an MRI device (Thermal MR).


Subject(s)
Magnetic Resonance Imaging , Thermometry , Computer Simulation , Electromagnetic Fields , Humans , Phantoms, Imaging , Protons , Radio Waves
16.
Magn Reson Med ; 83(1): 203-213, 2020 01.
Article in English | MEDLINE | ID: mdl-31452259

ABSTRACT

PURPOSE: Potassium ions (K+ ) play a critical role in cardiac electrophysiology, and changes in their concentration reflect pathophysiological processes related to cardiovascular diseases. Here, we investigated the feasibility of in vivo 39 K MRI of the human heart. To achieve this, we developed, evaluated, and applied a 39 K/1 H RF coil, which is tailored for 39 K MRI of human heart at 7.0T. METHODS: The performance of the 39 K/1 H RF coil was evaluated by electromagnetic field and specific absorption ratio simulations using 2 (male/female) human voxel models. The RF coil was evaluated at the bench and applied in an in vivo proof-of-principle study involving 7 healthy volunteers. The experiments were performed using a 7.0T whole-body MR system in conjunction with a 3D density-adapted projection reconstruction imaging technique. RESULTS: For in vivo 39 K MRI of the human heart, a nominal spatial resolution of 14.5 × 14.5 × 14.5 mm3 within a total scan time of 30 min was achieved. The average SNR within the heart was 9.6 ± 2.4. CONCLUSION: This work validates the design of a 39 K/1 H RF coil for cardiac MR at 7.0T and demonstrates for the first time in vivo the feasibility of 39 K MRI of the human heart.


Subject(s)
Heart/diagnostic imaging , Ions , Magnetic Resonance Imaging, Cine , Myocardium/metabolism , Potassium/analysis , Adult , Electromagnetic Fields , Feasibility Studies , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Male , Phantoms, Imaging , Radio Waves , Signal-To-Noise Ratio , Transducers
17.
MAGMA ; 33(1): 121-130, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31797228

ABSTRACT

OBJECTIVE: Design, implementation, evaluation and application of a quadrature birdcage radiofrequency (RF) resonator tailored for renal and cardiac sodium (23Na) magnetic resonance imaging (MRI) in rats at 9.4 T. MATERIALS AND METHODS: A low pass birdcage resonator (16 rungs, din = 62 mm) was developed. The transmission field (B1+) was examined with EMF simulations. The scattering parameter (S-parameter) and the quality factor (Q-factor) were measured. For experimental validation B1+-field maps were acquired with the double-angle method. In vivo sodium imaging of the heart (spatial resolution: (1 × 1 × 5) mm3) and kidney (spatial resolution: (1 × 1 × 10) mm3) was performed with a FLASH technique. RESULTS: The RF resonator exhibits RF characteristics, transmission field homogeneity and penetration that afford 23Na MR in vivo imaging of the kidney and heart at 9.4 T. For the renal cortex and medulla a SNRs of 8 and 13 were obtained and a SNRs of 14 and 15 were observed for the left and right ventricle. DISCUSSION: These initial results obtained in vivo in rats using the quadrature birdcage volume RF resonator for 23Na MRI permit dedicated studies on experimental models of cardiac and renal diseases, which would contribute to translational research of the cardiorenal syndrome.


Subject(s)
Kidney/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Sodium Isotopes , Animals , Calibration , Equipment Design , Heart/diagnostic imaging , Heart Ventricles/diagnostic imaging , Myocardium , Phantoms, Imaging , Radio Waves , Rats , Signal-To-Noise Ratio , Transducers , Translational Research, Biomedical
18.
Magn Reson Med ; 82(6): 2343-2356, 2019 12.
Article in English | MEDLINE | ID: mdl-31257651

ABSTRACT

PURPOSE: Cardiorenal syndrome describes disorders of the heart and the kidneys in which a dysfunction of 1 organ induces a dysfunction in the other. This work describes the design, evaluation, and application of a 4/4-channel hydrogen-1/sodium (1 H/23 Na) RF array tailored for cardiorenal MRI at 7.0 Tesla (T) for a better physiometabolic understanding of cardiorenal syndrome. METHODS: The dual-frequency RF array is composed of a planar posterior section and a modestly curved anterior section, each section consisting of 2 loop elements tailored for 23 Na MR and 2 loopole-type elements customized for 1 H MR. Numerical electromagnetic field and specific absorption rate simulations were carried out. Transmission field ( B1+ ) uniformity was optimized and benchmarked against electromagnetic field simulations. An in vivo feasibility study was performed. RESULTS: The proposed array exhibits sufficient RF characteristics, B1+ homogeneity, and penetration depth to perform 23 Na MRI of the heart and kidney at 7.0 T. The mean B1+ field for sodium in the heart is 7.7 ± 0.8 µT/√kW and in the kidney is 6.9 ± 2.3 µT/√kW. The suitability of the RF array for 23 Na MRI was demonstrated in healthy subjects (acquisition time for 23 Na MRI: 18 min; nominal isotropic spatial resolution: 5 mm [kidney] and 6 mm [heart]). CONCLUSION: This work provides encouragement for further explorations into densely packed multichannel transceiver arrays tailored for 23 Na MRI of the heart and kidney. Equipped with this technology, the ability to probe sodium concentration in the heart and kidney in vivo using 23 Na MRI stands to make a critical contribution to deciphering the complex interactions between both organs.


Subject(s)
Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Kidney/diagnostic imaging , Magnetic Resonance Imaging, Cine , Sodium Isotopes/chemistry , Electromagnetic Fields , Feasibility Studies , Female , Humans , Male , Phantoms, Imaging , Protons , Radio Waves , Reproducibility of Results , Torso/diagnostic imaging , Transducers
19.
MAGMA ; 32(1): 37-49, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30421250

ABSTRACT

OBJECTIVE: Fluorine MR would benefit greatly from enhancements in signal-to-noise ratio (SNR). This study examines the sensitivity gain of 19F MR that can be practically achieved when moving from 9.4 to 21.1 T. MATERIALS AND METHODS: We studied perfluoro-15-crown-5-ether (PFCE) at both field strengths (B0), as a pure compound, in the form of nanoparticles (NP) as employed to study inflammation in vivo, as well as in inflamed tissue. Brains, lymph nodes (LNs) and spleens were obtained from mice with experimental autoimmune encephalomyelitis (EAE) that had been administered PFCE NPs. All samples were measured at both B0 with 2D-RARE and 2D-FLASH using 19F volume radiofrequency resonators together. T1 and T2 of PFCE were measured at both B0 strengths. RESULTS: Compared to 9.4 T, an SNR gain of > 3 was observed for pure PFCE and > 2 for PFCE NPs at 21.1 T using 2D-FLASH. A dependency of 19F T1 and T2 relaxation on B0 was demonstrated. High spatially resolved 19F MRI of EAE brains and LNs at 21.1 T revealed signals not seen at 9.4 T. DISCUSSION: Enhanced SNR and T1 shortening indicate the potential benefit of in vivo 19F MR at higher B0 to study inflammatory processes with greater detail.


Subject(s)
Crown Ethers/chemistry , Fluorine-19 Magnetic Resonance Imaging , Fluorine/chemistry , Inflammation/drug therapy , Animals , Brain/diagnostic imaging , Calibration , Contrast Media/chemistry , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Female , Lymph Nodes/diagnostic imaging , Mice , Nanoparticles , Radio Waves , Reproducibility of Results , Sensitivity and Specificity , Signal-To-Noise Ratio , Spin Labels , Spleen/diagnostic imaging
20.
J Magn Reson Imaging ; 49(2): 597-607, 2019 02.
Article in English | MEDLINE | ID: mdl-30291654

ABSTRACT

BACKGROUND: Hepatic disorders are often associated with changes in the concentration of phosphorus-31 (31 P) metabolites. Absolute quantification offers a way to assess those metabolites directly but introduces obstacles, especially at higher field strengths (B0 ≥ 7T). PURPOSE: To introduce a feasible method for in vivo absolute quantification of hepatic 31 P metabolites and assess its clinical value by probing differences related to volunteers' age and body mass index (BMI). STUDY TYPE: Prospective cohort. SUBJECTS/PHANTOMS: Four healthy volunteers included in the reproducibility study and 19 healthy subjects arranged into three subgroups according to BMI and age. Phantoms containing 31 P solution for correction and validation. FIELD STRENGTH/SEQUENCE: Phase-encoded 3D pulse-acquire chemical shift imaging for 31 P and single-volume 1 H spectroscopy to assess the hepatocellular lipid content at 7T. ASSESSMENT: A phantom replacement method was used. Spectra located in the liver with sufficient signal-to-noise ratio and no contamination from muscle tissue, were used to calculate following metabolite concentrations: adenosine triphosphates (γ- and α-ATP); glycerophosphocholine (GPC); glycerophosphoethanolamine (GPE); inorganic phosphate (Pi ); phosphocholine (PC); phosphoethanolamine (PE); uridine diphosphate-glucose (UDPG); nicotinamide adenine dinucleotide-phosphate (NADH); and phosphatidylcholine (PtdC). Correction for hepatic lipid volume fraction (HLVF) was performed. STATISTICAL TESTS: Differences assessed by analysis of variance with Bonferroni correction for multiple comparison and with a Student's t-test when appropriate. RESULTS: The concentrations for the young lean group corrected for HLVF were 2.56 ± 0.10 mM for γ-ATP (mean ± standard deviation), α-ATP: 2.42 ± 0.15 mM, GPC: 3.31 ± 0.27 mM, GPE: 3.38 ± 0.87 mM, Pi : 1.42 ± 0.20 mM, PC: 1.47 ± 0.24 mM, PE: 1.61 ± 0.20 mM, UDPG: 0.74 ± 0.17 mM, NADH: 1.21 ± 0.38 mM, and PtdC: 0.43 ± 0.10 mM. Differences found in ATP levels between lean and overweight volunteers vanished after HLVF correction. DATA CONCLUSION: Exploiting the excellent spectral resolution at 7T and using the phantom replacement method, we were able to quantify up to 10 31 P-containing hepatic metabolites. The combination of 31 P magnetic resonance spectroscopy imaging data acquisition and HLVF correction was not able to show a possible dependence of 31 P metabolite concentrations on BMI or age, in the small healthy population used in this study. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:597-607.


Subject(s)
Body Mass Index , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging/methods , Phosphorus/analysis , Adult , Age Factors , Aged , Calibration , Female , Healthy Volunteers , Heart Ventricles/diagnostic imaging , Humans , Liver Diseases/metabolism , Magnetic Resonance Spectroscopy , Male , Middle Aged , Phantoms, Imaging , Prospective Studies , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...